
ACCORD - Automated Compliance Checks for Construction, Renovation or Demolition Works

D2.3 Rules Toolset

August 28, 2024

This project has received funding from the European
Union's Horizon Europe research and innovation
programme under grant agreement no. 101056973.

UK Participants in Horizon Europe Project [ACCORD] are
supported by UKRI grant numbers [10040207] (Cardiff
University), [10038999] (Birmingham City University and
[10049977] (Building Smart International).

Funded by the European Union. The views and opinions expressed are those of the author(s) only and do

not necessarily reflect those of the European Union or European Health and Digital Executive Agency

(HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 2

Project Title
ACCORD - Automated Compliance Checks for Construction, Renovation or
Demolition Works, grant agreement No: 101056973.

Deliverable: D2.3 Rules Toolset

Type: Other

Dissemination
level:

Public

Work package: 2

Lead
Beneficiary:

FUNITEC

Deliverable
leader:

FUNITEC

Contributing
partners:

BCU, CU, Ontotext.

Due date: 31 August 2024

Date: 28 August 2024

Status –
version, date:

V1.2 – 28-08-2024

Authors:

Gonçal Costa, Álvaro Sicilia (FUNITEC)

Hansi Hettiarachchi, Edlira Vakaj, Dhoyazan Al-Turki, Mohamed Gaber (BCU)

Thomas Beach (CU)

Reviewer 1: Maxime Lefrançois (IMT)

Reviewer 2: Rick Makkinga (FUI)

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 3

DOCUMENT HISTORY

Version Date
%

Complete
Comments Main Authors (organisation)

0.1 13/05/2024 5
Initial Deliverable Structure and

Table of Contents

Edlira Vakaj (BCU), Gonçal

Costa (FUNITEC)

0.2 13/05/2024 40 Section 0, Annex A, B and C
Hansi Hettiarachchi, Mohamed

Gaber(BCU)

0.3 21/06/2024 45
Introduction, partial contribution

in Sections 1 and 0
Gonçal Costa (FUNITEC)

0.6 02/07/2024 75 Sections 1 and 0 Gonçal Costa (FUNITEC)

0.7 03/07/2024 90 Section 3.3 RASE Automation
Dhoyazan Al-Turki (BCU), Edlira

Vakaj (BCU)

0.8 10/07/2024 93 Edits and Internal Review
Edlira Vakaj (BCU), Thomas

Beach (CU)

0.9 16/07/2024 95

Integration of the results of the

focus group activity in section

2.5

Gonçal Costa (FUNITEC), Álvaro

Sicilia (FUNITEC)

1.0 26.8.2024 97 Internal review Maxime Lefrançois (IMT)

1.1 28/08/2024 99 Corrections according to review Edlira Vakaj (BCU)

1.2

FINAL
28/08/2024 100 Submitted Rita Lavikka (VTT)

Statement of originality:

This deliverable contains original, unpublished work except where clearly indicated otherwise.

Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation or both.

The information in this document is provided "as is", and no guarantee or warranty is given that the

information is fit for any particular purpose. The above-referenced consortium members shall have

no liability for damages of any kind, including without limitation direct, special, indirect, or

consequential damages that may result from the use of these materials subject to any liability which

is mandatory due to applicable law.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 4

Executive summary

This deliverable presents the results of Tasks 2.4, “Artificial Intelligence for Natural Language

Processing of Building Codes”, and 2.5 “, Design and Implementation of Rule Formalisation Tool”,

of the ACCORD project.

The aim of the ACCORD project is to digitalise building permitting and compliance procedures to

improve the quality and productivity of design and construction processes and support the

development of a sustainable built environment. This is achieved by adopting a semantic approach

where different individual software components are combined to create flexible solutions that

eliminate the need for expensive centralized systems that are difficult to establish and manage.

Building on the results achieved in Tasks 2.1, “Technical Review of Existing Standards”, 2.2,

“Technical Review of Existing Standards”, and 2.3, "Machine-executable Regulations”, where

existing ontologies, standards and data models in the construction data domain have been analysed,

a methodology has been proposed to digitize and formalize regulations. The results of its application

are instances of the Architecture Engineering and Construction Compliance Checking Ontology

(AEC3PO) – an ontology created to represent the building compliance data domain – together with

Building Compliance Rule Language (BCRL) – a domain-specific rules language to express checking

rules – this deliverable will report the tasks related to the development of a Rule Formalisation Tool

(RTF) which encompasses and integrates all these concepts, included the Artificial Intelligence (AI)-

powered Rule Formalisation for Building Codes.

More specifically, this deliverable:

1. Provides a description of the design, architecture, and development of the RFT.

2. Introduces an AI-driven approach to formalising building code standards.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 5

Publishable summary

This deliverable presents the results of Tasks 2.4, “Artificial Intelligence for Natural Language

Processing of Building Codes”, and 2.5, “Design and Implementation of Rule Formalisation Tool” of

the ACCORD project.

The aim of the ACCORD project is to digitalise building permitting and compliance procedures to

improve the quality and productivity of design and construction processes and support the

development of a sustainable built environment. This is achieved by adopting a semantic approach

where different individual software components are combined to create flexible solutions that

eliminate the need for expensive centralized systems that are difficult to establish and manage.

Building on the results achieved in Tasks 2.1, “Technical Review of Existing Standards”, 2.2

“Technical Review of Existing Standards” and 2.3 “Machine-executable Regulations”, where existing

ontologies, standards and data models in the construction data domain have been analysed, a

methodology has been proposed to digitize and formalize regulations. The results of its application

are instances of the Architecture Engineering and Construction Compliance Checking Ontology

(AEC3PO) – an ontology created to represent the building compliance data domain – together with

Building Compliance Rule Language (BCRL) – a domain-specific rules language to express checking

rules – this deliverable will report the tasks related to the development of a Rule Formalisation Tool

(RTF) which encompasses and integrates all these concepts, included the Artificial Intelligence (AI)-

powered Rule Formalisation for Building Codes.

More specifically, this deliverable:

1. Provides a description of the design, architecture, and development of the RFT.

2. Introduces an AI-driven approach to formalising building code standards.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 6

Contents

Executive summary .. 4

Publishable summary ... 5

Contents .. 6

List of Figures .. 7

List of Tables ... 8

1. Introduction .. 9

1.1 The ACCORD Project .. 9
1.2 Aims and Objectives ... 9
1.3 Structure of the document .. 10

2. Rule formalisation tool .. 11

2.1 Overview .. 11
2.2 Process to formalise regulations in the rule formalisation tool 12
2.3 Functionalities to assist in the generation of rules .. 19
2.4 Architecture and components ... 23
2.5 Testing and results ... 24

2.5.1 Description ... 24

2.5.2 Results ... 25
2.6 Future improvements ... 26

3. AI-powered Rule Formalisation for Building Codes ... 27

3.1 Rule Formalisation ... 27
3.2 NLP Background .. 28

3.2.1 Language Models/Transformers ... 28

3.2.2 Large Language Models ... 30
3.3 ACCORD-NLP Data, AI Models and Workflows ... 31

3.3.1 CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation

towards Automatic Compliance Checking ... 31

3.3.2 SNOWTEC: Synthetic Natural Language Oversampling with Transformer-based

Information Extraction for Automated Compliance Checking 42

3.3.3 RASE-LLM: RASE Automation Leveraging Large Language Models.......... 55

3.3.4 Resource Index .. 67

3.3.5 Future Improvements ... 69

4. Conclusions .. 70

5. References ... 71

Annex A. SNOWTEC: Model Hyper-parameters .. 76

Annex B. SNOWTEC: Error Analysis of Entity Classifier .. 76

Annex C: SNOWTEC: Error Analysis of Relation Classifier .. 78

Annex D: RASE-LLM Tool Interface ... 81

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 7

List of Figures

Figure 1. Diagram showing the rule formalisation process elaborated in Task 2.3. 11
Figure 2. Screenshots of the login and register interfaces. .. 12
Figure 3. Screenshot of the interface to upload a pdf document. ... 13
Figure 4. Screenshot of the interface to select the manual or automatic annotation. 13
Figure 5. Screenshot of how the PDF document looks in a regular PDF viewer. 14
Figure 6. Screenshot of the interface to apply the RASE method manually where the annotation has

not yet been applied. ... 15
Figure 7. Screenshot of the interface to apply the RASE method manually after the annotation has

been applied showing RASE boxes (filled colour) and RASE tags (only a coloured outline, no fill).

 ... 15
Figure 8. Screenshot of the interface to apply the RASE method manually, highlighting the selection

and remove button for the selected content. ... 16
Figure 9. Screenshot of the interface to validate the BCRL expressions. 17
Figure 10. Screenshot of the interface to create or select a project. .. 18
Figure 11. Screenshot of the interface showing the list of projects already created by the user. ... 19
Figure 12. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

an object. .. 20
Figure 13. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

a property.. 21
Figure 14. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

a reference. ... 22
Figure 15. Diagram showing the architecture of the Rule Formalisation Tool. 23
Figure 16. Transformer encoder architecture .. 29
Figure 17. CODE-ACCORD semi-automatic data preparation approach 34
Figure 18. Sequence length distribution of annotated sentences in the CODE-ACCORD dataset . 39
Figure 19. Distribution of entity categories .. 40
Figure 20. Distribution of the number of entities per sentence ... 40
Figure 21. Sequence length distribution of annotated text spans as entities.................................. 41
Figure 22. Distribution of relation categories ... 41
Figure 23. Distribution of the number of relations per sentence... 41
Figure 24. Overview of the SNOWTEC pipeline .. 43
Figure 25. Entity classification architecture ... 44
Figure 26. Relation classification architecture ... 45
Figure 27. Distribution of the relation categories in original data ... 47
Figure 28. Distribution of the relation categories in augmented data ... 47
Figure 29. Sequence length distribution of text elements in the regulatory text corpus 49
Figure 30. Training and validation/evaluation learning curves of entity classifiers built using the

RoBERTa-Large model on different learning rates. ... 51
Figure 31. Training and validation/evaluation learning curves of relation classifiers built using the

RoBERTa-Large model on different learning rates. ... 53
Figure 32. RASE automation tool architecture. ... 65
Figure 33. Confusion matrix of the best-performed relation classifier (RoBERTa-Large) on the test

dataset .. 79
Figure 33. Login Screen .. 81
Figure 34. Sign Up Screen .. 81
Figure 35. Change Password .. 82
Figure 36. Projects List ... 82
Figure 37. Add Project .. 83

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 8

Figure 38. Project output (YAML Editor) .. 83

List of Tables

Table 1. Building codes of England and Finland ... 33
Table 2. Statistical summary of data collection .. 35
Table 3. Entity categories. A colour theme is used to enhance the clarity of the sample annotations

given in this document. ... 36
Table 4. Sample entity annotations ... 36
Table 5. Relation categories ... 37
Table 6. Sample relation annotations .. 38
Table 7. Format of entity data file .. 39
Table 8. Format of relation data file ... 40
Table 9. Original sentence samples and their corresponding synthetic samples. Columns e1 and e2

represent the categories of each entity. A colour scheme representing categories is involved to

highlight the entities in original and synthetic samples. ... 46
Table 10. Statistics of original and augmented relation-annotated training data 48
Table 11. Performance evaluation of the entity classifier across validation and test datasets using

various transformer models. The best F1 score is marked in bold. .. 50
Table 12. Impact on best-performed entity classifier’s (RoBERTa-Large) results by different

optimisation techniques. The best F1 score is marked in bold... 51
Table 13. Performance evaluation of the relation classifier across validation and test datasets using

various transformer models, with and without the integration of data augmentation. The best F1 score

is marked in bold. The improvement in F1 score on the test data after applying data augmentation is

indicated within brackets. .. 52
Table 14. Impact on best-performed relation classifier’s (RoBERTa-Large) results by different

optimisation techniques. The best F1 score is marked in bold... 53
Table 15. Knowledge graphs generated by SNOWTEC for a set of sample sentences. In. and Out.

denotes the input to and output from the pipeline. ... 54
Table 16. Hyper-parameter specifications ... 76
Table 17. Entity categories with a few samples ... 77
Table 18. Results of the best-performed entity classifier (RoBERTa-Large) on validation and test

datasets across different entity categories .. 77
Table 19. Results of the best-performed entity classifier (RoBERTa-Large) on test datasets

depending on the entity count per sentence. ... 78
Table 20. Results of the best-performed relation classifier (RoBERTa-Large) on validation and test

datasets across different relation categories ... 78
Table 21. Frequently misclassified relations with identified causes and samples 80

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 9

1. Introduction

1.1 The ACCORD Project

The ACCORD project aims to provide a framework for the digitalisation of building permitting and

compliance processes, using Building Information Modelling (BIM), Geographic information systems

(GIS), and other data sources. The end goal is to improve the productivity and quality of design and

construction processes. ACCORD is based on the principle that these digitised processes must be

human-centred, transparent, and cost-effective for the permit applicants and authorities and, above

all, relevant to the industry within which they are to be employed.

To address this challenge, ACCORD proposes developing a semantic framework for European

digital building permitting processes, regulations, data, and tools. This framework will drive the

formalisation of regulations into a set of rules and the integration of existing tools to check compliance

with building codes and regulations as microservices in a dynamic ecosystem. Software solutions

will be developed, providing consistency, interoperability and reliability with municipal, regional,

national, and international regulatory frameworks, processes, and standards.

Building codes and regulations often involve complex language and technical jargon that can be

difficult to understand and apply in practice. This ambiguity can lead to different possible

interpretations. This reality represents a challenge for the development of automation processes to

check compliance with regulations. One way to address this challenge may be through a

semantisation carried out through a process of formalisation of regulations described in plain text

into machine-readable documents using a domain-specific rule language.

Semantic Web technologies, ontologies, and semantic rule languages provide a foundation for

creating a solution aligned with this semantisation approach. Also, Artificial Intelligence (AI) methods,

such as Natural Language Processing (NLP), can be used to extract and analyse compliance

requirements from natural language text in an automated way. This process of transforming natural

language into machine-readable data with explicit meaning can also help address this challenge by

creating structured representations of regulations that can be exchanged and processed by

computers.

1.2 Aims and Objectives

This deliverable reports the results of tasks involved in the implementation of the rule formalisation

process that takes place in WP2. These tasks include the implementation of developed concepts,

such as the methodology to formalise regulations as instances of the AEC3PO together with the

BCRL language. The generated graphs, according to the AEC3PO ontology, are represented in

Resource Description Framework (RDF) format and are aimed to be used in automated code

compliance (ACC) processes. The knowledge graph includes rules extracted from the textual data,

such as building codes, standards, and regulations.

This deliverable reports the outcomes of Tasks 2.4 “Artificial Intelligence for Natural Language

Processing of Building Codes” and 2.5 “Design and Implementation of Rule Formalisation Tool” of

the ACCORD project. The overall aim of this work is to provide the implementation of the method to

perform the rule formalisation process, elaborated in the previous tasks of WP2, to formalise building

codes and regulations by converting them into RDF graphs representing instances of the AEC3PO

ontology.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 10

The objectives of these tasks are:

1. Task 2.4: Implementation of the AI-driven rule formalisation elements for building codes.

2. Task 2.5: Implementation of the Rule Formalisation tool.

3. Tasks 2.4 and 2.5: Evaluation of the outcome of the tool testing, including the AI-driven rule

formalisation part for building codes.

1.3 Structure of the document

The remainder of this document is organised into two sections:

• Section 2 introduces the rule formalisation tool developed in ACCORD. This starts with a general

description of the tool in Section 2.1, followed by the steps to formalise regulations through the

different interfaces implemented in the tool in Section 2.2. Section 2.3 contains a description with

specific functionalities to help the user define the rules. The tool’s architecture and components

are described in Section 2.4. Finally, the process and results of testing and a focus group activity

to evaluate the tool are documented in Section 2.5, and possible future improvements and

additional developments are presented in Section 2.6.

• Section 3 introduces an AI-powered rule formalisation suite, leveraging recent advancements in

NLP. The section provides a comprehensive overview of the background, design and

implementation approaches, and findings of this development. Section 3.1 introduces the

concept of rule formalisation, presenting a summary of previous approaches and outlining

ACCORD’s objectives within the context of state-of-the-art technologies. Subsequently, Section

3.2 elaborates further on the recent trends in NLP that this development has followed. Finally,

Section 3.3 details various sub-components developed by ACCORD to facilitate automatic rule

formalisation.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 11

2. Rule formalisation tool

2.1 Overview

The purpose of the rule formalisation tool is to provide a means for technicians working in public

administrations, such as city councils and other governmental bodies responsible for generating

building codes and regulations in European countries, to be able to formalise the regulations

provided in plain text documents into a machine-processable format according to a semantic data

schema, an ontology, with the purpose of it becoming a standard.

This rule formalisation process has already been defined in Task 2.3 “Machine-executable

Regulations” and reported in Deliverable D2.2 “BC Ontology and Rule Format” under the name

Regulation Digitalisation Methodology (Figure 1). The tool integrates components already defined in

this Task 2.3 and developed in Task 2.2 “Development of the Building Compliance Ontology”. These

components are the AEC3PO ontology and the BCRL language. The tool also integrates an

automated annotation process using NLP techniques, which is described in section 3. This process

has been implemented within an autonomous and separate service that is invoked from the tool.

Figure 1. Diagram showing the rule formalisation process elaborated in Task 2.3.

As can be seen in Figure 1, the tool covers the entire formalisation process, from uploading a PDF

file of a regulation by the user, to obtaining the result: an RDF graph generated as an instance of the

AEC3PO ontology, and which is published to an external rules database.

The rule formalisation tool has been implemented as a web application where users can register and

create projects for each regulation to be transformed into machine-processable format. The usual

data such as name, surname, email address, etc. are requested during registration (see Figure 2).

Once registered, the user can begin to perform several actions to carry out rule formalisation process

for one or more regulations. The following section 2.2 details how this process is carried out in the

tool from the user's perspective and, in parallel, the processes that are carried out internally.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 12

Figure 2. Screenshots of the login and register interfaces.

2.2 Process to formalise regulations in the rule formalisation tool

The process of formalizing a regulation through the tool is carried out through 4 stages: creation,

annotation, validation, and publication, where a specific interface is provided for each of them. The

steps carried out in each of these stages are described below:

Step 1: Project definition

The first step is to create a project. Within the tool, a user can create multiple projects. The idea is

to create a project for each regulation that is going to be formalized.

When creating a project, the tool asks the user to define the following fields:

• The name of the project.

• The URL of the regulation (for example, the URL of the original public official website).

• The publication date (this may be the date of its official publication or can also be the date

of a new version of the graph due to errors or other amendments for example).

• A short code (can be some kind of abbreviation, code name of the regulation, or a

classification category for example).

• The scope (International, National, Regional, and Municipal).

• The Country where the regulation applies (in case of National, Regional, or Municipal).

• Regulation language.

• Measure system (Metric or Imperial).

• A summary or description of the regulation.

Step 2: Uploading the regulatory document

This is a simple step that involves uploading the regulation document in PDF format (Figure 3).

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 13

Figure 3. Screenshot of the interface to upload a pdf document.

Step 3: Choosing manual or automatic annotation

Once the regulatory document has been uploaded in PDF format, the tool offers the user two options

to annotate the text using the Requirement Application Selection Exception (RASE) [1, 2] method:

(1) from scratch, or (2) obtain a proposal with the annotation already made on the text (Figure 4).

The second option involves utilising AI to automatically apply the RASE method. Details about this

service, which includes other additional functionalities, are provided in section 3.

Figure 4. Screenshot of the interface to select the manual or automatic annotation.

Step 4: Annotation

If the user selects the manual option, the tool provides a view of the document like those shown by

most PDF viewers (see Figure 5). The intention is for the user to start with a familiar view of the

document, where text justification and the content per line are maintained to provide the same view

as in the PDF viewer as much as possible. However, as the user begins to select parts of the text,

applying the RASE method, the original formatting is replaced with the new RASE formatting.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 14

Figure 5. Screenshot of how the PDF document looks in a regular PDF viewer.

The interface provides eight buttons to annotate the regulatory text using the RASE method. There

are four buttons to define clauses and subclauses according to whether they refer to a Requirement,

Application, Selection, or Exception. Then, there are four more buttons to select parts of the text

based on these same categories to define objects, properties, or references to other parts of the text

of the regulation or to another document (see Figure 6). The interface also provides another button

to create sections. Therefore, when the user selects, for example, the title of a section of the

regulation, the tool automatically creates a section from this point in the text to the next defined

section. If none has been defined, the section includes all the text that follows the title.

Figure 6 shows an example of how the user views the regulatory text before starting the annotation

process while Figure 7 shows the result after applying the RASE method to the same text shown in

the current part of the interface. Tagging options through the interface are explained in section 2.3.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 15

Figure 6. Screenshot of the interface to apply the RASE method manually where the annotation has

not yet been applied.

Figure 7. Screenshot of the interface to apply the RASE method manually after the annotation has

been applied showing RASE boxes (filled colour) and RASE tags (only a coloured outline, no fill).

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 16

The annotation interface includes a text box just to the right of the regulatory text, which displays the

text that is selected for tagging, or which has already been tagged before but the user has selected

it by clicking on it. Linked to this aspect, the interface also has a “Remove” button that allows the

user to remove the current RASE tag from the selected text (see red boxes in Figure 8). Since there

are three levels of RASE tagging (text, box, section), the user must assume that deleting a higher

level will also delete all included tagging. For example, deleting a section (by selecting the title) also

means deleting all existing tagging in the text belonging to that section.

Figure 8. Screenshot of the interface to apply the RASE method manually, highlighting the selection

and remove button for the selected content.

If, in step 3, the user selects the option to automatically apply the RASE method using AI tools, then

instead of performing all the annotation manually, they will only need to correct/extend the annotation

generated by the AI.

Step 5: BCRL validation

Once the user is sure that the text is correctly tagged according to the RASE method, the next step

is to validate the BCRL expressions in terms of correctness in the definition. BCRL is a language

developed within the ACCORD project introduced in [3] with a grammar generated with Another Tool

for Language Recognition (ANTLR)1 for building compliance checking purposes. The tool has been

designed to accept definitions in BCRL that comply with its grammar. However, it may happen that

authors provide an expression incorrectly. For example, the expression of a rule may indicate that a

property value must be higher than a specific reference value when in reality, the text is indicating

that this value should be lower (e.g., “:Width < 1500” instead of “:Width > 1500”).

1 https://www.antlr.org/

https://www.antlr.org/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 17

To facilitate this review process in a more visual way, the user will see a table with rows that will

include the text involved in the assignment and the corresponding BCRL expression (Figure 9). This

provides users with a view that allows them to view only the rules and the text from which they

originate to ease the process of review.

Figure 9. Screenshot of the interface to validate the BCRL expressions.

Step 6: Publishing

Once the user has validated the result, the next step is to publish it in the rule database, a component

developed outside the scope of this tool and, therefore, provided externally. This way, when the user

pushes the publish button, the graph will be stored as an RDF graph in this rule database which is a

semantic triple store (Ontotext GraphDB).

When the user clicks on the validate button, the tool transforms the tagged RASE file into an

AEC3PO instance that is represented as a graph described in the JSON-LD format [4].

The graphs are uniquely identified in the database by their URI. This URI is composed of different

parts, according to its characteristics, as described below:

• Base URI: This part is common for all the graphs to be uploaded to the rule database (e.g.,
https://graphdb.accordproject.eu/resource/aec3po/). However, this part can be modified in
the user settings interface if a user wants to connect to another possible alternative rule
database.

• Country Code: It involves the country code where the regulation applies (e.g., FI), or it may
include the continent code (e.g., EU if it is a regulation that applies at a European level).

https://graphdb.accordproject.eu/resource/aec3po/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 18

• Classification: This field may contain a short text that identifies the regulation in some way.
Its purpose is to differentiate one regulation from another in the same country or even when
they are of the same type.

• Language: It involves the language code in which the regulation is specified (e.g., en-GB)
since the same regulation can be provided in different languages.

• Publication date: In principle, this is the date the graph is published. However, this date can
be selected by the user due to certain reasons described below. The date is expressed
according to ISO 8601 standard.

This way, the URL is configured like this:

https://graphdb.accordproject.eu/resource/aec3po/${country}/${classifier}/${language}/${date}

The following example URL could be one for a published graph:

https://graphdb.accordproject.eu/resource/aec3po/FI/ACC/en-GB/2024-09-08

The fields that form the URI cannot be edited directly by the end user in this interface except for the

publication date. The reason for this is that commonly, a graph of the regulation is published at a

different time than when the regulatory text has been officially published. Thus, the user needs to be

able to enter the official publication date.

The interface provided by the tool to perform this step also offers the user the option to download

the graph in JSON-LD format2 (see Figure 10).

Figure 10. Screenshot of the interface to create or select a project.

2 https://json-ld.org/

https://graphdb.accordproject.eu/resource/aec3po/$%7bcountry%7d/$%7bclassifier%7d/$%7blanguage%7d/$%7bdate%7d
https://graphdb.accordproject.eu/resource/aec3po/FI/ACC/en-GB/2024-09-08
https://json-ld.org/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 19

The tool has another interface where the user can create or select one of the projects previously

created, being able to resume the process of formalising the regulation from the last stage (creation,

annotation, validation, or publication) where this was left (Figure 11). Apart from resuming the

process where the user left off by clicking on the “arrow” button, the parameters of a project can be

edited by clicking on the configuration button, as well as deleted by clicking the “Delete” button.

Figure 11. Screenshot of the interface showing the list of projects already created by the user.

2.3 Functionalities to assist in the generation of rules

The rule formalisation tool has been designed as a web interface tool that combines some typical

functionalities, such as user registration and configuration, while others are specific. Once registered,

the user can follow the process described above in the previous section 2.2. However, to carry out

the specific tagging part of the RASE process, some additional functionalities are provided to assist

in rule generation.

The challenge tackled by the development of the interface has been to try to simplify the extraction

of rules that must be specified in BCRL expressions. This extraction is complex since it implies that

the user is familiar with this language, an aspect that is not common and that implies that an

RASE/BCRL expert assists the user in carrying out this task. To try to avoid this to a certain extent,

an additional form is provided on the right side of the interface aimed at simplifying these actions

and trying to abstract the user from the BCRL expressions in most cases. Below is a detail of how

these functionalities have been implemented through a panel that appears on the right side of the

interface.

After the user has selected a text and clicked on one of the Requirement, Application, Selection, or

Exception buttons, a panel appears offering three main options for the user to choose from “object”,

“property”, or “reference”, which are described below:

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 20

1. Object. The user can select this option when they wish to indicate that the regulatory text

selected refers to the definition of an object (Figure 12). In BCRL expressions, objects are defined

through the following expression: “type == :Name_of_the_object.” in the screenshot

above. The name of the object can correspond to the word selected in the text or the user can

provide a different object name if required .

Figure 12. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

an object.

2. Property. The user can select this option when they wish to indicate that the selected regulatory

text selected refers to a property (Figure 13). In this case, the tool tries to populate the input

automatically, for the user to review. To do this, the tool has three internal lists:

• A list containing typical properties used in the AEC domain (e.g., height, width, weight). This

way, if a property name is contained in the selected text, this will be proposed as the default

property name.

• A list containing comparison operators, for example “more than, >” or “should not be less,

>=”. If the selected text contains any expression from the list, then the associated operator is

selected by default.

• A list containing names of units. If the selected text contains any expression from the list,

then the associated unit name is selected by default.

The name of the units is not restricted nor defined in BCRL expression. However, the tool makes

sure that the name of the unit is valid by checking it against a list of accepted names. Also, the

tool distinguishes whether a property is Boolean and, in this case, removes the part

corresponding to the units from the panel.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 21

Figure 13. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

a property.

3. References. There are situations in regulatory text where some articles or clauses refer to other

parts of the text, whether it is a specific piece of information, a clause, or an entire section. It may

also happen that these references refer to an external document. To make this relationship

explicit, the user can select this option (Figure 14). For the first case, the tool provides a

mechanism to allow the user to create an internal link to other content at the RASE text, RASE

box or Section level. The mechanism includes an option so that when the reference has been

made, the user can identify it by displaying the referred content framed within a rectangle with a

red frame. For the second case, the tool provides a text field for the user to provide a URL or the

name of the regulation being referenced.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 22

Figure 14. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining

a reference.

RASE visualization and annotation actions are performed on an HTML file that is stored within the

application. All modifications are automatically saved in this file. This involves any tagging action,

whether creating RASE BOX clauses or tagging words or parts of text and confirming them.

Therefore, it is not necessary to perform the entire tagging process at the same time. The user, for

example, can perform tagging of one section one day and continue with other sections another day.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 23

2.4 Architecture and components

As it is shown in Figure 15, the architecture of the rule formalisation tool consists of three main layers:

(1) Data layer, (2) Business Logic Layer, and (3) Presentation Layer. These layers and their

components are explained below.

Figure 15. Diagram showing the architecture of the Rule Formalisation Tool.

Layers:

• Data Layer. It includes all the data involved and necessary for the management of projects for

the formalisation of regulatory texts. This includes the management of the different files that must

be created internally during the formalisation process depending on the stage for each user. The

database has been implemented using the MySQL software package.

• Business Logic Layer. This is divided into two parts or sublayers:

1. Internal Services Layer. It contains the modules with major functionalities of the tool. Three

of them provide file management functionality, database connection, and GUI connection.

The other three provide functionalities to transform one content into another depending on

the stage of the formalisation process as follows:

a. PDF Reader: It converts the content of a PDF document provided by a user into plain

text, maintaining a content layout similar to the original view by using whitespace

characters. The output is a file in text format.

b. TEXT to HTML: It converts a plain text into an HTML document to enable the conduct

of the RASE tagging process.

c. HTML to AEC3PO: Converts an HTML document tagged with the RASE method into

instances of the AEC3PO ontology that include the corresponding relationships with

the rules in BCRL language.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 24

2. Communications Service Layer. It provides the link to the external modules of the tool and

provides the communication between the data layer and them. The communication logic layer

provides the mechanisms for obtaining data from the data layer and for introducing data into

it from such external modules, acting as a middleware. External services are: (1) NLP Service

and (2) Building Codes and Regulations API. This last service provides the connection with

the semantic triple store (graphDB) where the graphs are stored. This communication is

provided via API REST [5].

• Presentation Layer. It works as a point of interaction between the tool and the user. It provides

the necessary functionality for the user to perform all the actions indicated in the formalisation

process described in the previous section 2.2, through the corresponding interfaces.

2.5 Testing and results

2.5.1 Description

To evaluate the operation and user experience in the current prototype of the tool, the focus group

method was chosen. A small group composed of four participants from four different partners of the

project consortium was selected. All of these were familiar with or had some knowledge, experience,

or connection with the area of elaboration, definition and/or application of regulations in building

projects. However, to provide a “blind” test of the tool, no prior training was given about the use of

the rule formalisation tool. This method was chosen to enable us to gather a true first impression of

the use of the tool by reasonably qualified users.

The activity was performed in three stages:

1. Testing the tool: this exercise was designed to last approximately 30 to 45 minutes maximum,

and it consisted of asking participants to carry out the process of formalising a regulation through

the rule formalisation tool. To do this, each participant had to register in the tool and follow a

series of steps from uploading a PDF of the regulation to publishing the graph in the rules

database. The same PDF document was provided to all participants to be able to compare the

results.

To carry out the exercise, a set of files were provided to carry out the test:

a) A document with the instructions.

b) A PDF document with the regulations that participants had to use.

c) An HTML document with the RASE markup already applied that they had to use as a

reference to try to reproduce the same tagging through the tool, since the test was not aimed

at assessing their knowledge of the RASE method but rather the ability of the tool to apply it.

2. Evaluation of results: It was carried out through a questionnaire via Microsoft Forms, which all

participants had to complete immediately after completing the exercise with the tool. The

questions focused on collecting data of interest for evaluating the experience with the tool and

for the focus group session.

3. Focus group session: This was the final step of the activity and the one most closely linked to

the concept of focus group. This exercise consisted of bringing together all the participants in a

session where the most relevant aspects for the evaluation of the experience in carrying out the

exercise through the tool were discussed in a common and guided manner.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 25

2.5.2 Results

The testing and focus group activity was carried out by four participants, a woman and three men,

with different profiles: an architect (participant 1), a researcher (participant 2), and two software

developers (participants 3 and 4). The questionnaire consisted of two different types of questions:

(1) assessment by scoring and (2) text description.

Evaluation questions were proposed to assess the tool in various aspects (previous user experience,

functionality, usability, etc.) with a score between 1 and 5 (Table 1).

Table 1. Result of the questionnaire for rating questions.

Question
Rating

par. 1

Rating

par. 2

Rating

par. 3

Rating

par. 4

Rating

Average

What is your knowledge and expertise in the field of definition

and specification of building codes and regulations on a scale

from 1 (beginner) to 5 (very expert)?

4 2 4 1 2.75

What is your expertise and knowledge in the field of

application of building codes and regulations on a scale from

1 (beginner) to 5 (very expert)?

4 3 4 3 3.50

What is your knowledge and expertise in the RASE method

on a scale from 1 (neophyte) to 5 (very expert)?
4 2 1 1 2.00

What is your knowledge about the BCRL language on a scale

from 1 (no knowledge) to 5 (full knowledge)?
3 2 1 3 2.25

To what extent would you be able to perform the RASE

tagging in a new regulation autonomously, without

instructions, on a scale of 1 (impossible) to 5 (affordable)?

4 4 1 2 2.00

Please indicate whether you have had problems for tagging a

text or word indicated in the instructions on a scale of 1

(never) to 5 (frequently)?

1 1 5 3 2.50

To what extent would you be able to perform the RASE

tagging in a new regulation autonomously, without

instructions, on a scale of 1 (impossible) to 5 (affordable)?

4 2 1 1 2.00

Based on the experience gained from this exercise, what do

you consider to be the tool’s ability to provide the

formalization of a regulation on a scale from 1 (very

cumbersome process) to 5 (easy to do)?

4 3 1 2 2.50

To what extent do you think this tool could be useful for law

and policy makers on a scale from 1 (useless,) to 5 (totally

useful)?

5 3 1 2 2.75

Key findings that can be summarised from the questions are:

1. Several users encountered minor bugs and issues in tagging the text using the RASE method.

2. Most participants who had no previous experience with the RASE method would have struggled

to apply it independently or would find its application easy to do.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 26

3. The level of previous experience in the application of the RASE method is directly linked to how

useful participants feel the tool will be for law and policymakers.

The questionnaire results were discussed in the focus group session, which, in large part, focused

on how to reduce the need to carry out the rule formalisation process with the assistance of a RASE

expert.

Based on the feedback gathered from the questionnaire and the focus group, the following actions

have been agreed:

1. All bugs and issues identified will be corrected – this has already been completed.

2. Training material on the RASE method will be created to guide new users of the tool in completing

the digitisation process.

A final piece of feedback from the focus group was that using AI to automatically apply the RASE

method and review the results will be key to easing the tool's adoption. However, it is important to

note that knowledge of the RASE method will still be required to ensure users are able to accurately

and confidently check the results generated by the AI process.

2.6 Future improvements

Although the tool meets all the functional requirements for which it was designed, fulfilling its

purpose, several improvement actions can be implemented in the future. The most relevant ones

are described below according to each category.

• Connection to bSDD: The buildingSMART Data Dictionary (bSDD) is a service for sharing

definitions for describing the built environment to help agents of the AEC industry use agreed

and consistent terms3. These definitions and relations are necessary to facilitate automation in

the application of microservices developed within the ACCORD framework. Currently, existing

tools allow the definition of the dictionaries required by the rule formalisation process in bSDD.

Thus, to avoid re-creating existing tools, this has not been implemented within the RFT. In the

future, it may be desirable to provide an interface within the tool for convenience. However, it

should be noted that this task should probably be performed by a user with different knowledge

and more familiar with the data structure of the IFC model.

• Multiple languages: Although the tool allows a user to upload files in different languages, the

language of the interface is only in English. Therefore, one improvement would be to provide the

interfaces in different languages.

• Larger evaluations with actual potential users: Regardless of whether the tool continues to

develop throughout the project, new tests will need to be carried out aimed at a broader audience

to give greater validity to the usefulness of the tool in each of the aspects to be assessed.

3 https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/

https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 27

3. AI-powered Rule Formalisation for Building Codes

Compliance checking is integral within the Architecture, Engineering, and Construction (AEC) sector

to ensure the safety, stability, reliability, and usability of building designs. Conventionally, compliance

checking relied on manual methods, which proved to be labour-intensive, time-consuming,

expensive, and error-prone [6]. Thus, there has been a significant shift towards Automated

Compliance Checking (ACC), which has been extensively studied over the past 50 years [1]. The

aim of ACC is to enhance the accuracy and productivity of compliance-checking processes while

addressing the shortcomings of manual approaches and meeting the evolving demands of the

industry.

Primarily, compliance checking is a two-fold process. Initially, it requires identifying the relevant

building codes or regulatory requirements applicable to a building design, followed by verifying

compliance against these requirements. Comparatively, the second phase is less challenging for

automation, given that modern building designs are typically generated using computer software,

resulting in digital or machine-processable formats. However, a significant challenge arises from the

fact that building codes are mainly written in textual documents intended for human consumption,

such as domain experts. Natural languages are hard for computers to process automatically due to

their unstructured nature and inherent complexities arising from human-centred design [7]. These

challenges are further amplified in the regulatory texts by their complex structures, ambiguities, and

domain-specific characteristics. Thus, in enabling ACC, formalising, or interpreting the information

conveyed in regulatory text into machine-processable formats emerged as a pivotal and complex

phase [8].

To address this critical need, an AI-powered rule formalisation suite, leveraging recent

advancements in NLP, has been developed as part of the ACCORD project. This section provides

a comprehensive overview of the background, design and implementation approaches, and findings

of this development. Section 3.1 introduces the concept of rule formalisation, presenting a summary

of previous approaches and outlining ACCORD's objectives within the context of state-of-the-art

technologies. Subsequently, Section 3.2 elaborates further on the recent trends in NLP that this

development has followed. Finally, Section 3.3 details various sub-components (i.e., data, AI models

and workflows) developed by ACCORD to facilitate automatic rule formalisation. The outputs

presented in Section 3 can be used as stand alone models and tools or integrated in other tools as

exemplified by the RFT of ACCORD.

3.1 Rule Formalisation

Formalisation is a process of refining something into a more precise and structured format. In the

context of Architecture, Engineering, and Construction (AEC), rule formalisation particularly involves

converting regulatory information, typically written in text, into a structured or standardised

representation that computers or machines can readily understand and process. This conversion is

essential to automate the compliance checking processes. Moreover, it improves the clarity and

consistency of information, thereby facilitating more effective knowledge base generation.

Previous research within AEC has proposed various approaches for rule formalisation from text,

aiming to enhance the effectiveness of ACC. In early work, manual methods were popularly used for

this task due to text complexities and domain-specific demands [2, 9]. However, the labour-intensive

nature of manual approaches and their limitations in efficiently supporting ACC prompted a shift

towards automating information extraction utilising NLP and Machine Learning (ML) techniques. This

shift mainly introduced rule-based approaches for text formalisation [10, 11, 12]. Despite their

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 28

performance, rule-based methods inherently lacked adaptability and flexibility, heavily relying on

domain-specific characteristics [13]. Their accuracy highly depended on manually crafted rules,

requiring extensive domain expertise. These limitations have encouraged a transition within rule

formalisation methods towards ML techniques, leveraging predictive models to capture textual

information rather than relying on laborious handcrafted rules.

According to recent ML-based research, adopting deep-learning techniques has emerged as a

promising avenue for rule formalisation. Bidirectional Long Short-Term Memory (Bi-LSTM) and

Convolutional Neural Network (CNN) architectures have been commonly used in extracting

information from regulatory text due to their proficiency in learning long-term dependencies and

contextual features [14, 15]. However, the approaches proposed within the AEC sector for rule

interpretation exhibit notable gaps, particularly in light of recent advancements in the NLP domain.

In NLP, Language Models (LMs) have gained significant recognition, showcasing state-of-the-art

performance across various tasks, including information extraction from text [16, 17, 18, 19]. Overall,

LMs represent a significant advancement in text processing with their sophisticated ability to capture

text's contextual details and transfer pre-trained knowledge to downstream tasks, outperforming the

models based on Recurrent Neural Network (RNN) architectures [20, 21]. Within the ACCORD

project, our primary focus has been on bridging the gap between the AEC and NLP domains by

proposing and exploring LM-based approaches for rule formalisation.

3.2 NLP Background

Within the Natural Language Processing (NLP) domain, there is a clear shift towards deep learning

and language modelling-based text processing approaches across various applications. The

improved text encoding and decoding using the advanced embedding techniques capable of

automatically capturing underlying linguistics stands as a major driving force behind this

transformation. During this transformation, both pre-trained Language Models (which are also known

as transformers), and Large Language Models (LLMs) attracted wide attention from the NLP

community recently following their more robust language understanding capabilities [22]. ACCORD

is a pioneer in the use of LM-based approaches applied to AEC ACC rule formalisation.

3.2.1 Language Models/Transformers

Transformers are deep neural networks which utilise the attention mechanism to capture text’s

contextual details and long-range dependencies [23]. Their invention is a remarkable milestone in

neural language modelling, following their capability to capture the influence on each word by

another, notably enhancing natural language understanding. There are three main types of

transformer architectures, namely encoder-only, decoder-only and encoder-decoder models.

However, this work only utilised encoder-only models following its requirements in rule formalisation,

and the following text will refer to such models as transformers for simplicity.

The encoder-only models primarily target encoding text into numerical representations that hold the

underlying linguistics and contextual information. These models are originally built for language

understanding tasks, such as text classification, in which the model requires predicting a label given

the input text [22]. Following the general transformer encoder architecture, different model variants

such as BERT [20], RoBERTa [24] and ALBERT [25] were proposed with the ability to generate

contextual text representations and fine-tune for downstream tasks by transferring the pre-trained

knowledge. These capabilities allowed the transformer-based architectures to achieve state-of-the-

art results in many complex NLP tasks such as information extraction [18, 17], machine translation

[26] and question answering [27].

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 29

3.2.1.1 Transformer Architecture

The transformer architecture consists of multi-layer bidirectional encoders that utilise the self-

attention mechanism [23] to produce language representations which capture underlying linguistics

and the context, as illustrated in Figure 16. It processes a sequence of text (e.g., sentence) and

outputs representations/embeddings that correspond to the entire sequence and its tokens, which

can be used to learn downstream tasks while conserving the original text's linguistic features.

Figure 16. Transformer encoder architecture

Transformer Input Format: The transformer encoder takes a text sequence or a text sequence pair

as its input, enabling it to handle diverse downstream tasks. It uses special tokens, including [CLS]

and [SEP], to organise the input text. [CLS] is the initial token, which indicates the beginning of the

sequence. [SEP] is the separator to be placed in between if the input has two sequences. After this

raw text formatting, a tokeniser converts the sequence into a token embedding. In addition to the

token embedding, a segment and a position embedding are required to format the input. The sum of

these three embeddings constitutes the transformer's input. The segment embedding contains

Boolean values (i.e., 0 and 1) indicating the separation of sequences/segments. The position

embedding contains sequential numbers starting from 0, which specify each token's position within

the sequence.

Transformer Output Format: The transformer encoder generates representations/embeddings per

token in the input sequence. The output of the initial token ([CLS]) is an embedding representing the

complete input sequence. It can be used for sequence-based predictions/classifications. Similarly,

other outputs are token embeddings corresponding to each input token, which form contextual

word/token embeddings that can be used with token-based predictions/classifications. The

transformer architecture needs to be modified by including an additional layer, like a classification

head suitable for the targeted task, on top of the output layer to fine-tune the model for a downstream

task.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 30

3.2.1.2 Learning Methods

Unlike other deep neural networks, transformers undergo two training steps according to their

design: (1) pre-training/language modelling and (2) fine-tuning.

1. Pre-training/language Modelling: In the pre-training phase, a language model is built by

training the transformer architecture on unlabelled textual data or free text. Therefore, pre-

training is also known as language modelling. There are two commonly used pre-training

approaches: (1) masked language modelling (MLM) and (2) next sentence prediction (NSP)

[20]. The MLM approach randomly masks a portion (e.g., 15%) of the input tokens and then

trains the model to predict the masked tokens. This task helps to learn bidirectional

representations by training the model to predict masked tokens in a multi-layered context

while focusing on both directions. NSP is a binary prediction task that focuses on recognising

whether a sentence pair appears consecutively in a monolingual corpus. This task mainly

helps the model to understand the relationships/interconnections between sentences.

Among these two techniques, MLM is commonly used by various transformer architectures,

such as RoBERTa [24] and ALBERT [25], as it was found to be competitive. Thus, we also

involve MLM in language modelling within this work.

2. Fine-tuning: Fine-tuning is usually conducted by targeting a downstream task. To train a

transformer for a downstream task, an appropriate layer(s), such as a classification head,

needs to be added to the top of the transformer's output layer, depending on the targeted

task. During this process, the model initialises using its pre-trained parameters and then gets

fine-tuned for the targeted task utilising the task-specific labelled data. The initialisation with

pre-trained parameters commences the learning process with the model's original knowledge

and facilitates the effective learning of the downstream task. Fine-tuning can be applied to all

model parameters (i.e., parameters of the transformer and its additional layers) or only to the

additional layers. According to previous research, fine-tuning the transformer together with

its newly-added layers obtained the best results for downstream tasks, as this approach

adjusts the weights in the entire architecture, including the generic language model focusing

on a particular task or domain-specific data rather than only fine-tuning the task-specific

layers [28]. Thus, our approach also follows the entire fine-tuning process. More details about

the modifications we made to the transformer architecture to support different text

classification tasks within this effort are described in Section 3.3.

3.2.2 Large Language Models

Large Language Models (LLMs) are transformer-based language models with a vast number of

parameters pre-trained on extensive text corpora [22]. In contrast to conventional language models

or transformers, LLMs not only have larger model sizes but also demonstrate superior natural

language understanding and generation capabilities, largely attributed to their extensive pre-training

on massive free text datasets. LLMs also exhibit emergent capabilities that are not available in

smaller-scale models or transformers, including (1) instruction following, (2) in-context learning, and

(3) multi-step reasoning [22].

1. Instruction Following: Instruction following enables the model to perform a new task solely

based on the given instructions without seeing any explicit examples [29]. This process is

also referred to as zero-shot learning. In this setup, the quality of outputs heavily relies on

the model’s pre-trained knowledge and the clarity of instructions.

2. In-context Learning: In-context learning allows the LLM to learn a new task by only seeing

a small set of examples provided through the prompt during inferencing [30]. This technique

is also known as few-shot learning. This approach is particularly useful for complex tasks that

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 31

are challenging to explain without examples. Also, this helps mitigate data scarcity issues by

requiring only a few samples for task learning.

3. Multi-step Reasoning: Multi-step reasoning provides LLM with the ability to solve a complex

problem or task by breaking it down into a series of intermediate reasoning steps, also known

as the chain of thoughts [31]. This strategy allows the model to solve simplified versions of

the original task at each step, leading to the final output.

Moreover, LLMs are also capable of augmenting their knowledge using external sources [32] and

improving themselves using reinforcement learning from human feedback [33], enabling them to

effectively handle new tasks.

With the rapid advancement of LLM development, several model families have emerged as

prominent players in the field. Among them, GPT, LLaMA and PaLM represent three popular

families. Generative Pre-trained Transformer (GPT) models, developed by OpenAI, are decoder-

only language models [21]. This family consists of various model versions, with the latest being GPT-

4, released in 2023. Currently, GPT-4 is widely regarded as the most powerful model within this

family, featuring the ability to process multi-modal data. LLaMA comprises a set of foundational

language models developed by Meta [34]. Unlike GPT models, LLaMA models are openly available,

making them accessible to a wider community. Even though the first LLaMA model was released in

2023, the family has now expanded to include several model variants, such as LLaMA, Alpaca,

Koala, and more, showcasing significant growth. Pathway Language Models (PaLM), developed by

Google, represent another notable family of LLMs [35]. Similar to the LLaMA models, PaLM models

are free to use; however, they remain closed-source like GPT. Leveraging pretraining on extensive

high-quality text corpora and a vast number of parameters, PaLM models exhibit robust multilingual

and reasoning capabilities.

Even though LLMs are still in their early stages of development, they have gained tremendous

popularity within the NLP community and beyond, emerging as general task resolvers, as showcased

by Microsoft Co-Pilot. The rapid pace of advancement in this field introduces new models, strategies

and findings within weeks or months. As a result of it, there is no established optimal approach for

leveraging LLMs to perform a particular task. Also, researchers face challenges in identifying the

most effective setups following this rapid growth. Therefore, our work also focuses on exploring

various strategies to develop the most effective LLM-powered systems, as detailed in Section 3.3.

3.3 ACCORD-NLP Data, AI Models and Workflows

3.3.1 CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards

Automatic Compliance Checking

Useful Links:

• GitHub Repository

• Hugging Face (Datasets)
• Annotation Manual

Since building regulations are written in textual documents within the AEC sector, extracting

information from textual rules to facilitate rule formalisation has been a challenge due to the

complexities associated with natural languages. Recent NLP developments, especially with deep

neural networks and language models, have overcome most existing challenges, surpassing

traditional information extraction approaches. However, having annotated data as ground truth is

crucial to train and evaluate such advanced models. Yet, to the best of our knowledge, there are no

https://github.com/Accord-Project/CODE-ACCORD
https://huggingface.co/ACCORD-NLP
https://github.com/Accord-Project/CODE-ACCORD/blob/main/annotated_data/Annotation_Strategy_V1.0.0.pdf

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 32

readily available datasets within the AEC sector to support complete information extraction from

regulatory text. We compiled CODE-ACCORD, following this requirement to empower the capacity

to involve recent trends in NLP for ACC.

CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of

England and Finland. As a self-contained sentence, we refer to a regulatory sentence that expresses

a rule and contains all the details itself without any linguistical co-references that are unresolvable

within the sentence, references to external sources or incomplete/ambiguous concepts. Such

sentences are essential for ACC as they express rules that can be directly extracted and interpreted

without extensive cross-referencing or additional context. Aligned with our core objective of

facilitating information extraction from text for machine-processable rule generation, each sentence

was annotated with entities and relations. Entities represent specific components such as ‘window’

and ‘smoke detectors’, while relations denote semantic associations between these entities,

collectively capturing the conveyed ideas in natural language. We manually annotated all the

sentences using a group of 12 annotators. Each sentence underwent annotations by multiple

annotators and subsequent careful data curation to finalise annotations, ensuring their accuracy and

reliability, thereby establishing the dataset as a solid ground truth.

In summary, CODE-ACCORD’s main contributions are as follows:

1. A novel data annotation approach to extract regulatory information from text covering entities

and their semantic relations, which are integral for understanding the ideas conveyed in

natural language.

2. An Entity-annotated dataset in English, sourced from a subset of England’s and Finland’s

building regulations, which underwent a rigorous data annotation and curation process.

3. A Relation-annotated dataset in English, sourced from a subset of England’s and Finland’s

building regulations, which underwent a rigorous data annotation and curation process.

More details about the CODE-ACCORD’s data collection methodology are described in Section

3.3.1.1. Subsequently, Section 3.3.1.2 details the data annotation methodology. Finally, the

information of datasets compiled by this effort together with data statistics, are included in Section

3.3.1.3. Also, the CODE-ACCORD approach and its findings have been submitted to the Data in

Brief Journal, which is currently under review4.

3.3.1.1 Data Collection Methodology

CODE-ACCORD consists of the English Building Regulations and the English translation of the

Finnish National Building Code, as we aimed to build a corpus in English5. In both countries, text

regulations are published in PDF documents and available online to the public.

Table 2 presents a statistical overview of the approved documents. However, CODE-ACCORD

excluded England’s approved documents C, D, H and J from further processing due to some

complex formatting associated with them.

4 CODE-ACCORD journal preprint is available on https://arxiv.org/pdf/2403.02231
5 The primary data were collected from the official websites of the UK Department for Levelling Up, Housing

and Communities and the Ministry of Housing, Communities & Local Government, and the National Building

Code of Finland from the Ministry of Environment.

https://arxiv.org/pdf/2403.02231
https://www.gov.uk/government/collections/approved-documents
https://www.gov.uk/government/collections/approved-documents
https://ym.fi/en/the-national-building-code-of-finland
https://ym.fi/en/the-national-building-code-of-finland

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 33

Table 2. Building codes of England and Finland

Country Approved Document/Decree # Volumes # Pages

England A: Structure 1 54

B: Fire Safety 2 384

C: Site preparation and resistance to contaminates and moisture 1 52

D: Toxic Substances 1 10

E: Resistance to Sound 1 86

F: Ventilation 2 110

G: sanitation, hot water safety and water efficiency 1 55

H: drainage and waste disposal 1 64

J: Combustion appliances and fuel storage systems 1 89

K: Protection from falling, collision and impact 1 68

L: Conservation of fuel and power 2 220

M: Access to and use of buildings 2 143

O: Overheating 1 44

P: Electrical safety 1 22

Q: Security in dwellings 1 20

R: Infrastructure for electronic communications 2 56

S: Infrastructure for charging electric vehicles 1 47

Material and workmanship: Approved Document 7 1 24

Finland Accessibility 1 6

Fire Safety 1 25

Energy Efficiency 1 18

Planning and Supervision 1 7

Strength and Stability of Structures 1 55

Safety of Use 1 9

Health (Indoor Climate; Water and sewerage; and Humidity) 3 16

Acoustic Environment 1 4

Total 33 1688

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 34

Figure 17. CODE-ACCORD semi-automatic data preparation approach

To extract the text date from the documents and prepare them for data annotation, a semi-automatic

approach, as shown in Figure 17, is followed. It mainly contains two phases: (1) document

processing and (2) sentence processing. Document processing primarily focused on converting PDF

files to TXT files while preserving the textual structure and information. Initially, this step converted

PDF files to TXT files using the PDFMiner library6. Then, the TXT files were further processed by

removing line breaks, footnotes, tables, figures, and unnecessary sections to have the cleaned

versions ready for sentence processing. Sentence processing is mainly aimed at extracting and

filtering sentences for the entity and relation annotations, following the three steps below.

1. Sentence Splitting: This step splits the regulatory text into individual sentences, allowing

the next steps to process sentences.

2. Sentence Filtering: During this step, the sentences were automatically filtered to extract

sentences containing rules based on three distinct features.

a. Qualitative Requirements: Qualitative requirements are specific conditions

expressed numerically or with quantitative terms. These requirements often specify

precise values, measurements, or numerical criteria that must be met to ensure

compliance with the regulations. Examples of quantitative requirements may include

keywords such as ‘less than’, ‘greater than’, ‘equal’, ‘at least’, ‘higher than’, ‘more

than’ and ‘lower than’, followed by numerical values or thresholds. The quantitative

requirements are considered since they are mostly used in building codes for

describing requirements [8].

b. Subjective Requirements: Subjective requirements are stipulations that involve the

use of subjective language or expressions. These requirements are not defined by

precise numerical values or measurements but rather by language that conveys

recommendations, preferences, or suggestions. Subjective requirements often

include terms like ‘should be’, ‘recommended’, ‘preferred’ or ‘advisable’. While

subjective in nature, these requirements are important in building regulations as they

allow for flexibility and adaptation to different situations while still providing a

framework for best practices and quality standards. To the best of our knowledge,

6 PDFMiner documentation is available on https://pypi.org/project/pdfminer/

https://pypi.org/project/pdfminer/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 35

existing research in the field of applying NLP for the automation of building regulations

has not addressed subjective requirements in their analyses, methodologies, or

datasets [8].

c. Deontic Logic: Deontic logic refers to the logic that deals with the expression of

permissions, obligations, prohibitions, and other normative statements. It is used to

represent rules and requirements that are binding or mandatory, such as rules that

specify what ‘must’, ‘shall’, ‘could’ or ‘prohibit’ within building regulations. Deontic logic

plays a crucial role in modelling the normative aspects of these regulations, providing

a formal framework to represent and reason about mandatory and discretionary

requirements. Similar to subjective requirements, deontic logic has not been

extensively considered in previous research efforts. This is primarily due to the focus

of most research on quantitative requirements, given their higher frequency within

building regulations [8].

3. Sentence classification: The final step classified each filtered sentence as a self-contained

or non-self-contained sentence. This was performed manually to remove any false positive

sentences identified during the sentence filtering step. A self-contained sentence is a

regulatory sentence that expresses a rule and contains all the details itself without any

linguistical co-references that are unresolvable within the sentence, references to external

sources or incomplete/ambiguous concepts. Following this step, all non-self-contained

sentences were excluded from the sentence collection.

Completing the data preparation approach resulted in a self-contained sentence collection ready for

the manual entity and relation annotation process, as summarised in Table 3.

Table 3. Statistical summary of data collection

Country Sentence Count Self-contained Sentence Count

England 19201 963

Finland 1473 283

Total 20674 1246

3.3.1.2 Data Annotation Methodology

Since CODE-ACCORD’s primary focus is facilitating information extraction from regulatory text

required for rule formalisation, two key types of information: (1) entities and (2) relations, which are

essential for comprehending the ideas conveyed in natural language [36], were aimed during data

annotation. Our annotation group contained 12 annotators with either a computer science or a civil

engineering/construction background. Since this work targets the automation of compliance

checking using machine learning concepts, we believe it is important to involve experts from both

areas in the annotation process. To collect human annotations, we used the LightTag text annotation

platform [37], considering its text annotation coverage, including entities and relations, project

management support and user-friendly interfaces.

We conducted the entity and relation annotations in rounds. Before moving into the actual rounds,

there were two test rounds using a team of two annotators to refine the annotation strategy. Once

the strategy was finalised, there were seven rounds for actual annotations. Each sentence was

annotated by two to three annotators through these rounds. Given the complexity associated with

annotations due to the multi-step annotation process, which is further explained below, each

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 36

annotation round is followed by a curation round to determine the final annotations. Three members

joined as data curators, and their curation jobs were assigned without overlaps with the annotation

jobs. During curation, the curator decided on the final annotation for all entities and relations with

disagreements between annotators, considering the proposed annotations. More details about entity

and relation annotation approaches are described below.

Entity Annotation: Entities are specific pieces of information or concepts that can be categorised.

Or, simply, they are anything that can be referred to using a proper name [36]. Following the idea

proposed in [8] [13], we picked four named entity categories, described in Table 4, for entity

annotation. However, deviating from previous work, CODE-ACCORD adopted a simple category

structure, mainly aiming at the generalisability of our annotation approach across different

subdomains, such as structure, fire safety and accessibility, and information coverage, when defining

the named entities. A two-step annotation process: (1) mark entity text spans and (2) assign entity

categories was used for entity annotations, and annotations are conducted in rounds as described

above. A few annotated samples are shown in Table 5. As can be seen, the selected categories are

versatile enough to capture all entities in different sentence structures. Also, these samples are from

Accessibility and Fire Safety regulations to indicate the general applicability of our annotation

strategy in different subdomains.

Table 4. Entity categories. A colour theme is used to enhance the clarity of the sample annotations

given in this document.

Category Description

object An ontological concept which represents a thing that is subject to a particular requirement
(e.g., window, fire door)

property Property of an object (e.g., width, height)

quality Quality or uncountable characteristic of an object/property (e.g., horizontal, self-closing)

value A standard or a numerical value that defines a quantity (e.g., 1,500 millimetres, five per cent)

Table 5. Sample entity annotations

Original Sentence Annotated Sentence

The gradient of the passageway located in
an outdoor space may not exceed five per
cent.

The <property>gradient</property> of the
<object>passageway</object> located in an <object>outdoor
space</object> may not exceed <value>five per cent</value>.

There shall be a horizontal landing with a
length of at least 1,500 millimetres at the
lower and upper end of the ramp.

There shall be a <quality>horizontal</quality>
<object>landing</object> with a <property>length</property>
of at least <value>1,500 millimetres</value> at the
<property>lower and upper end</property> of the
<object>ramp</object>.

A fire door must be self-closing and self-
bolting.

A <object>fire door</object> must be <quality>self-
closing</quality> and <quality>self-bolting</quality>.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 37

Relation Annotation: Relations are semantic connections/associations among entities in the text

[36]. Extraction of relations together with entities is a crucial process to transform information

embedded in unstructured texts into structured data formats such as knowledge graphs. Altogether,

we picked ten relation categories described in Table 6 after carefully analysing the possible relations

in the regulatory text. Similar to our approach in defining entity labels, we mainly focused on the

generalisability across different subdomains and coverage of semantic information when identifying

these relation categories. The final category, ‘none’, is added considering the potential model

requirements for identifying instances without relation between entity pairs. Comparatively, relation

annotation requires a more complex process than the entity annotation process. As a result, a four-

step process: (1) mark entity text spans, (2) assign entity categories, (3) identify entity pairs which

form relations, and (4) assign relation categories, was used. This task has proven more challenging

than entity annotations, primarily due to its multiple intricate steps and the potential for error

propagation. However, we instructed the annotators to adhere to the entire flow, allowing them the

flexibility to highlight all relevant content simultaneously. Furthermore, this approach enabled them

to review the provided annotations by examining the final entity-relation representation. We only

applied the manual annotation process targeting the first nine entity categories without the ‘none’

category because once all the available relations are known, the remaining possible entity pairs form

the no relations. A few annotated samples are shown in Table 6.

Table 6. Relation categories

Category Description

selection A limit to the scope of an object/property based on another object, a quality or a user

necessity A qualitative/subjective or existential necessity of an object/property (e.g., should, should
have, shall be, etc.)

part-of Being a part of an object/property

not-part-of Not being a part of an object/property

greater A value that should be greater than to

greater-equal A value that should be greater than or equal to

equal A value that should be equal to

less-equal A value that should be less than or equal to

less A value that should be less than to

none No relation

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 38

Table 7. Sample relation annotations

Original Sentence Entity Pairs Relation

The gradient of the
passageway located in
an outdoor space may
not exceed five per
cent.

The <property>gradient</property> of the
<object>passageway</object> located in an outdoor space
may not exceed five per cent.

part-of

The gradient of the <object>passageway</object> located in
an <object>outdoor space</object> may not exceed five per
cent.

Part-of

The <property>gradient</property> of the passageway
located in an outdoor space may not exceed <value>five per
cent</value>.

less-equal

Entity-relation Representation

There shall be a
horizontal landing with
a length of at least
1,500 millimetres at the
lower and upper end of
the ramp.

There shall be a <quality>horizontal</quality>
<object>landing</object> with a length of at least 1,500
millimetres at the lower and upper end of the ramp.

selection

There shall be a horizontal <object>landing</object> with a
<property>length</property> of at least 1,500 millimetres at
the lower and upper end of the ramp.

part-of

There shall be a horizontal landing with a
<property>length</property> of at least <value>1,500
millimetres</value> at the lower and upper end of the ramp.

greater-equal

There shall be a horizontal <object>landing</object> with a
length of at least 1,500 millimetres at the <property>lower
and upper end</property> of the ramp.

necessity

There shall be a horizontal landing with a length of at least
1,500 millimetres at the <property>lower and upper
end</property> of the <object>ramp</object>.

part-of

Entity-relation Representation

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 39

3.3.1.3 CODE-ACCORD Datasets

CODE-ACCORD consists of two main annotated datasets, including entities and relations, which are

publicly available7. These annotations were applied to 862 self-contained sentences extracted from

the building regulations of England and the English translation of the National Building Code of

Finland (Section 3.3.1.1). Figure 18 illustrates the sequence length distribution of the selected

sentences, revealing that a majority consist of fewer than 40 tokens.

Figure 18. Sequence length distribution of annotated sentences in the CODE-ACCORD dataset

The format of an entity-annotated CSV data file is summarised in Table 8. The entity annotations

are available in the BIO (Beginning, Inside, Outside) format, which is considered the standard for

information extraction tasks [38]. Since an entity can span over multiple words/tokens, ‘B’ marks the

beginning word, and ‘I’ marks the other words which belong to the entity. All the remaining words

that do not represent any entity will be marked with ‘O’. A sentence together with its BIO-tagged

entities is shown below.

Table 8. Format of entity data file

Attribute Description

example_id Unique ID assigned for each sentence/data sample

content Original textual content of the sentence

processed_content Tokenised (using NLTK’s word_tokenize package) textual content of the sentence

label Entity labelled sequence in BIO format

metadata Additional information of sentence (i.e. original approved document from which the
sentence is extracted)

7 CODE-ACCORD datasets are accessible through Hugging Face on https://huggingface.co/ACCORD-NLP

https://huggingface.co/ACCORD-NLP

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 40

The format of a relation-annotated CSV data file is summarised in Table 9. The following format was

adopted to tag the entity pairs during relation data formatting in accordance with formats utilised in

recent studies [17] [39]. The special tags <e1> and </e1> represent the start and end of the first

entity that appeared in the sentence. Similarly, <e2> and </e2> represent the second entity.

The <e1>gradient</e1> of the <e2>passageway</e2> located in an outdoor space may not exceed five
per cent.

Table 9. Format of relation data file

Attribute Description

example_id Unique ID assigned for each sentence/data sample

content Original textual content of the sentence

metadata Additional information of sentence (i.e. original approved document from which
the sentence is extracted)

tagged_sentence Sentence with tagged entity pair

relation_type Category of the relation between the tagged entity pair

More details about the final statistics of entity and relation data are described below.

Entity Statistics: The CODE-ACCORD entities dataset has 4,297 entities distributed over four

categories, as shown in Figure 19. As can be seen in Figure 20, which illustrates the distribution of

the number of entities per sentence, most sentences consist of up to five entities. Figure 21 presents

the sequence length distribution of text spans from each category. Accordingly, most entity spans

are composed of one or two words/tokens. However, overall, there are more lengthy text spans

under ‘quality’ than in the other categories.

Figure 19. Distribution of entity categories

Figure 20. Distribution of the number of entities per
sentence

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 41

Figure 21. Sequence length distribution of annotated text spans as entities

Relation Statistics: The CODE-ACCORD relations dataset has 3,329 human-annotated relations

over nine categories. We automatically identified the unannotated entity pairs within sentences as

unrelated entity pairs which belong to the tenth category of ‘none’. Out of 8,104 samples categorised

as ‘none’, a random subset of 1,000 is included in the final dataset to ensure a balanced distribution

with other relations. The breakdown of a total of 4,329 relations across ten categories is shown in

Figure 22. Additionally, Figure 23 illustrates the distribution of the number of relations per sentence.

As can be seen, most sentences contained two or three relations, although a minority had over ten

relations.

Figure 22. Distribution of relation categories

Figure 23. Distribution of the number of
relations per sentence

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 42

3.3.2 SNOWTEC: Synthetic Natural Language Oversampling with Transformer-based

Information Extraction for Automated Compliance Checking

Useful Links:

• GitHub Repository

• Hugging Face (Datasets, Models and Demo)

• Python Package

• Live Demo

Building codes are primarily written in textual form, requiring extracting information from text to

decode these data to support rule formalisation. This requirement encouraged the development of

various Information Extraction (IE)/text formalisation techniques spanning manual, rule-based and

machine-learning methodologies over the past decades. Recent research has shown promise in

adopting deep learning; however, as far as we know, within Architecture, Engineering, and

Construction (AEC), the transformers/language models’ potential remains untapped/unexplored for

this task, yet they hold state-of-the-art performance across various Natural Language Processing

(NLP) tasks. To address this gap, we proposed SNOWTEC, harnessing transformer-based

architectures to extract information from regulatory sentences and transform it into standardised

formats (i.e., knowledge graphs). We particularly focused on self-contained sentences within this

development, which express rules while containing all the details themselves without any linguistical

co-references that are unresolvable within the sentence, references to external sources or

incomplete/ambiguous concepts. Such sentences form an essential component within Automated

Compliance Checking (ACC), following their direct expression of rules that can be extracted

straightforwardly.

There are two main types of information found in the text: (1) entities (also known as named entities)

and (2) relations, which are crucial for understanding the ideas expressed in natural language [36].

An entity is a concept or a specific piece of information that can be categorised or, simply, anything

that can be identified using a proper name [36]. For instance, given the sentence ‘The gradient

should not exceed five per cent’, ‘gradient’ and ‘five per cent’ represent its entities. A relation is a

semantic connection/association among entities in the text [36]. For example, the sentence

mentioned above illustrates a ‘less equal’ relation between the entities: ‘gradient’ and ‘five per cent’.

Collectively, these entities and their relations capture the rule(s) expressed in natural language.

Altogether, SNOWTEC included the development of a comprehensive pipeline capable of converting

regulatory sentences into knowledge graphs of entities and relations, streamlining ACC. Concerning

rule formalisation, unlike the many approaches which focus on converting regulatory text into rule

languages like SPARQL [40] [41], our focus lies on an intermediate, yet descriptive, representation.

Specifically, we leverage knowledge graphs to depict textual information in formats readable by both

humans and machines, facilitating the easy expansion of knowledge. Also, the human-readable

aspect enhances human-in-the-loop reviewing processes, ensuring the correctness and

trustworthiness of the outputs. This approach fosters a collaborative environment, promoting

confidence in the accuracy of the extracted information.

The primary aim of SNOWTEC was to utilise the transformers’ potential for IE from regulatory

sentences within the AEC sector, covering both entities and relations, to facilitate effective rule

formalisation. However, besides the modelling approach, the quality and quantity of annotated data

used to train the models significantly influence the final performance in predictive modelling. There

is a noticeable scarcity of annotated data in the AEC sector specifically targeting IE from the

regulatory text, which also can be seen as one of the main reasons for the limited adaptation of

https://github.com/Accord-Project/accord-nlp
https://huggingface.co/ACCORD-NLP
https://pypi.org/project/accord-nlp/
https://huggingface.co/spaces/ACCORD-NLP/information-extractor

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 43

recent NLP techniques. Data augmentation/oversampling has recently emerged as a popular

solution in the NLP domain to combat data scarcity issues. However, there is a notable absence of

data augmentation applications within the AEC sector focusing on textual data, and our efforts within

SNOWTEC also target addressing this gap by proposing a novel data augmentation method.

Moreover, our experimental studies compare the performance of several recent transformer models,

including BERT [20], RoBERTa [24] and ALBERT [25], employing diverse learning techniques. Also,

data from multiple domains such as accessibility, fire safety, structural integrity, energy efficiency

and more are involved in evaluating the general applicability of the proposed methodology for IE.

In summary, SNOWTEC’s main contributions are as follows.

1. A novel information extraction pipeline utilising state-of-the-art transformer/language models

to automatically extract information from the regulatory sentences in a domain-independent

manner.

2. A novel data oversampling/augmentation method designed to address data scarcity

concerns that impede the predictive capabilities of language models.

3. Formulation of the information extraction process from the regulatory text as a knowledge

graph generation task, introducing a new direction to facilitate effective rule formalisation for

ACC.

More information about the design and development of the SNOWTEC pipeline is described in

Section 3.3.2.1. Section 3.3.2.2 summarises the experimental studies conducted on SNOWTEC,

including model performances and error analyses. Finally, Section 3.3.2.3 demonstrates the

functionality of the entire pipeline with sample inputs and outputs. Also, a paper written based on the

SNOWTEC approach, and its findings have been submitted to the Computers in Industry Journal,

which is currently under review.

3.3.2.1 SNOWTEC Information Extraction Pipeline

SNOWTEC, the information extraction pipeline developed as a part of the ACCORD project, primarily

aimed at producing a machine-processable output (i.e., an entity-relation graph) that encapsulates

the information expressed in natural language, given a regulatory sentence as the input. This graph

can be readily processed to automate compliance checks while supporting human-in-the-loop review

processes.

Figure 24. Overview of the SNOWTEC pipeline

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 44

Overall, the SNOWTEC pipeline comprises four integral components: (1) entity classifier, (2) entity

pairer, (3) relation classifier and (4) graph builder. The overall pipeline, which includes input, output,

and intermediate data samples, is illustrated in Figure 24. Entity and relation classifiers are machine

learning models that utilise state-of-the-art language model/transformer-based architectures to

extract entities and relations from textual data effectively. Also, the proposed relation classification

approach is coupled with a novel data augmentation method to synthetically generate data to train

language models effectively. These components play a pivotal role within this pipeline, and they are

further described below. The entity pairer and graph builder act as connecting components that

transform data to support the data flow within the pipeline. Specifically, the entity pairer translates

the outputs generated by the entity classifier into the input format required by the relation classifier.

Graph builder transforms the predictions of the relation classifier into the final knowledge graph.

Entity Classifier: For entity classification, SNOWTEC involves a modified version of the general

transformer architecture shown in Figure 16 with softmax layers for each output token, as illustrated

in Figure 25. This architecture was commonly used within the NLP domain for sequence labelling

following its remarkable results [20] [42]. We formulated the entity classification task as a sequence

labelling problem to fit this architecture, as all the input tokens can be associated with a

corresponding entity label. The same format (i.e. BIO - Beginning, Inside, Outside format) used with

CODE-ACCORD entity formatting was involved here as the model’s data format (Section 393.3.1.3).

The raw text was passed to the model as input, allowing it to predict the BIO label with entity category

as the output. Since the model requires processing a single sentence per instance, we only use the

[CLS] token for input formatting without including the [SEP] token. Each softmax layer consists of k

number of neurons equal to the class/category count aimed at by the classifier (i.e., entity types).

Each neuron adopts the softmax activation function following Equation (1), which returns 𝑃𝑖, the

probability per class 𝑖. The input and output vectors are represented by 𝑧𝑖 and 𝑧𝑗. Once all

probabilities are calculated, the class with the highest probability is identified as the final prediction.

𝑃𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

(1)

Figure 25. Entity classification architecture

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 45

Relation Classifier: For relation extraction, SNOWTEC adapts the transformer-based architecture

shown in Figure 26, which was proposed by recent studies in the NLP domain [17] [43]. Since the

aim is to identify the semantic connection between an entity pair, we involved four additional special

tokens: <e1>, </e1>, <e2> and </e2> to format the model's input. <e1> and </e1> denote the start

and end of the first entity that appeared in the text sequence from the selected entity pair. Similarly,

<e2> and </e2> denote the start and end of the second entity. Among the transformer's special

tokens, we only use [CLS] with the relation classifier, as it requires processing a single sentence per

instance, similar to the entity classifier. From the output layer, we take the embeddings

corresponding to <e1> and <e2> as linguistical representations for the given entities. Then, their

concatenation is considered the final output representation, which is fed into a softmax layer to

predict the associated relationship. As described under the entity classifier above, a softmax layer

calculates the probability per class (i.e., relation types) following Equation (1). We pick the relation

type with the highest predicted probability as the final prediction.

Figure 26. Relation classification architecture

Data Augmentation: Data augmentation is the process that constructs synthetic data from an

available dataset. Such a process proves advantageous in scenarios with limited or unbalanced

data, mitigating the risk of overfitting in model training [44]. Even though data augmentation has

been widely used with image data, its utilisation in NLP is still at an early stage [45]. One of the

primary challenges in augmenting textual data lies in preserving the intricate linguistic structure

available in original data with synthetic data. Back-translation and random synonym replacement are

the two popularly used data augmentation techniques within NLP, considering their ability to

generate data without losing underlying linguistics [46] [47]. However, back-translation cannot be

used when the original data includes token-level labels, as back-translated samples could have a

different number of tokens with no direct mapping with the original tokens. Similarly, random

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 46

synonym replacement is not applicable for regulatory data, as the majority of the entities in regulatory

data appear as multi-word instances (e.g., `fire door', `cross-section area', etc.) and replacing some

words with their synonym could result in text phrases which are unknown to the domain or no longer

entities. After carefully analysing the limitations in available data augmentation techniques, we

developed a novel method to synthetically generate relation-annotated data utilising domain-specific

entities, which is demonstrated in Table 10.

Table 10. Original sentence samples and their corresponding synthetic samples. Columns e1 and

e2 represent the categories of each entity. A colour scheme representing categories is involved to

highlight the entities in original and synthetic samples.

Original Sample e1 e2 Relation Synthetic Samples

Between the locking points
for the mortice lock and
surface-mounted rim lock, the
<e1>distance</e1> should be
<e2>400-600mm</e2>.

property value equal Between the locking points for the
mortice lock and surface-mounted rim
lock, the <e1>cross-sectional area</e1>
should be <e2>1m3</e2>.

Between the locking points for the
mortice lock and surface-mounted rim
lock, the <e1>emission rate</e1> should
be <e2>25W/m2</e2>.

Between the locking points for the
mortice lock and surface-mounted rim
lock, the <e1>power input from
controls</e1> should be <e2>50</e2>.

<e1>Extinguishing
routes</e1> of basement
storeys must not be
connected to fire and smoke-
proof <e2>exits</e2>.

object object not-part-
of

<e1>dwelling units</e1> of basement
storeys must not be connected to fire and
smoke-proof <e2>space heating or air-
conditioning system</e2>.

<e1>room thermostat</e1> of basement
storeys must not be connected to fire and
smoke-proof <e2>tears</e2>.

<e1>kitchens</e1> of basement storeys
must not be connected to fire and smoke-
proof <e2>motor</e2>.

Each relation-annotated instance includes an entity pair marked in a sentence or textual context with

corresponding entity categories and an associated relation, as can be seen in Table 10 (columns

Original Sample, e1, e2 and Relation). In such a setting, we can create more samples by replacing

one or both entities with other entities of the same category. Table 10 contains three augmented

samples per original sample to illustrate the idea further. On some occasions, the generated samples

could hold false information. For instance, the first synthetic sample in Table 10 states an area (i.e.,

cross-sectional area) should be equal to a volume measure (i.e., 1𝑚3). However, it illustrates the

text pattern and semantic relationship between two such entities within the given context accurately,

allowing a model to learn associations among entities given a textual context. This fact is also

reinforced by the results reported in Section 3.3.2.2. Also, this approach is widely applicable to any

entity-relation dataset as there are no data-specific constraints.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 47

3.3.2.2 Model Performance Overview

As mentioned above, SNOWTEC consists of two machine learning models that extract entities and

their semantic relations during the information extraction process. We primarily utilised the human-

annotated data available with the CODE-ACCORD datasets to train the models and evaluate their

performance.

Human-annotated Data: CODE-ACCORD datasets (Section 3.3.1) were used to evaluate the

transformer-based models within SNOWTEC. As of now, to the best of our knowledge, CODE-

ACCORD stands as the sole publicly available dataset offering comprehensive entity and relation

annotations specifically designed for building regulatory data. In addition to incorporating building

regulations from two countries (i.e., England and Finland), this dataset also spans different

subdomains, enabling the assessment of the general applicability of proposed machine learning

models. More details about the CODE-ACCORD entity and relation datasets, including the used

categories, their distribution and sample count, are described in Section 3.3.1.3. For both proposed

classifiers, we considered 80% of the samples as training data and the remaining 20% as testing

data during the evaluations.

Considering the high imbalance nature within relation distribution, primarily characterised by

underrepresented categories, we applied the augmentation technique outlined in Section 3.3.2.1 for

the CODE-ACCORD’s relation-annotated data.

Augmented Data: Data augmentation was only applied for the relation categories: ‘equal’, ‘greater’,

‘greater-equal’, ‘less’, ‘less-equal’ and ‘not-part-of’, which exhibited a scarcity in representation.

Importantly, the test set remained unaltered while we exclusively augmented the training data. For

each sample in the training set, we generated 12 synthetic samples, considering the overall

categorical distribution. Altogether, data augmentation increased the original training dataset of

3,463 samples by 2,912 samples, as summarised in Table 11. Moreover, Figure 27 illustrates the

distribution of the final training dataset, following the original distribution in Figure 28. The augmented

dataset is also publicly available for utilisation by future research8.

Figure 27. Distribution of the relation categories in
original data

Figure 28. Distribution of the relation categories
in augmented data

8 More information on how to access the CODE-ACCORD augmented datasets are available on

https://github.com/Accord-Project/accord-nlp

https://github.com/Accord-Project/accord-nlp

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 48

Table 11. Statistics of original and augmented relation-annotated training data

Category Original Data Synthetic Data Total

equal 59 708 767

greater 44 528 572

greater-equal 86 800 886

less 7 84 91

less-equal 56 672 728

necessity 822 - 822

none 800 - 800

not-part-of 10 120 130

part-of 650 - 650

selection 929 - 929

Training data 3463 2912 6375

Furthermore, we developed a text corpus by leveraging England’s approved document collection9 to

enrich transformer models with domain-specific knowledge by utilising the language modelling

approach described in Section 3.2.1.2.

Regulatory Text Corpus: In developing the regulatory text corpus, we first converted all PDF files

into TXT format using the PDFMiner library10. Subsequently, we conducted a series of data-cleaning

procedures, including the rectification of formatting inconsistencies that occurred during the

conversion process and the elimination of non-semantic elements such as pointers (e.g., G1, 1.2,

a., etc.). Additionally, we filtered out section headings, incomplete text segments and those

containing fewer than three words, exclusively retaining complete sentences and bullet-pointed text

for the refined corpus. The final dataset comprised 14,336 text segments totalling 302,469 tokens.

Figure 29 illustrates the sequence length distribution within this refined corpus. We split the data

using an 80-20% split to have training and testing data. This text corpus is publicly available for

utilisation by future research11.

9 England's approved document collection is available on

https://www.gov.uk/government/collections/approved-documents
10 PDFMiner documentation is available on https://pypi.org/project/pdfminer/
11 The regulatory text corpus is available on https://github.com/Accord-Project/accord-nlp/tree/main/data/lm

https://www.gov.uk/government/collections/approved-documents
https://pypi.org/project/pdfminer/
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 49

Figure 29. Sequence length distribution of text elements in the regulatory text corpus

Our experiments utilised several pre-trained transformer/language models in conjunction with the

proposed architectures (Figure 25 and Figure 26). The selected models have gained significant

popularity in recent research due to their outstanding performance [48] [49].

Pre-trained Transformers: Altogether, we involved four transformer models: (1) BERT-Large (bert-

large-cased) [20], (2) RoBERTa-Large [24], (3) ALBERT-Large (albert-large-v2) [25], and (4)

ELECTRA-Large (electra-large-discriminator) [50], pre-trained on English text for our experiments.

These models were pre-trained in different settings, showcasing distinct characteristics. RoBERTa

is a BERT variant that is trained on more data with longer training sentences. ALBERT is a lite

version of BERT with parameter reduction to speed up the training process. ELECTRA follows a

token discrimination-based pre-training process to facilitate more efficient training. All these pre-

trained transformers were obtained from HuggingFace's model repository [51] to conduct the

experiments. Also, we used a common hyper-parameter setup for all model architectures, which is

further described in Annex A.

To evaluate the model's performance, we used precision (P), recall (R) and F1 scores, considering

their coverage and common usage across various machine learning applications.

Evaluation Metrics: Equations (2)-(4) were used for precision, recall and F1 score calculations. In

these equations, TP, FP and FN refer to the true positive, false positive and false negative counts,

respectively. Precision measures the accuracy of the predictions made by the model, while recall

measures the portion of actual instances that the model correctly predicted. F1 is the weighted

harmonic mean of precision and recall, combining their properties. For entity evaluation, we used

the seqeval framework with strict mode on BIO format [52]. This compares the text span, category

and BIO label to compute TP, FP and FN values and marks a span correct (TP) only if all these

elements match the ground truth. For relation evaluation, TP, FP, and FN values are computed solely

by comparing predicted and actual categories. A prediction is marked correct (TP) only if it matches

the ground truth category perfectly.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2)

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 50

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹

(3)

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Given the equal importance of multiple categories in both entity and relation classification, we

employed the macro-averaging method to derive the final metrics. This involved initially computing

each category's P, R and F1 values individually. Subsequently, we calculated their unweighted mean

to obtain the final metrics, following Equation (5). In this equation, 𝑋 represents a metric (i.e., P, R

or F1), 𝑛 represents the total number of categories, and 𝑋𝑖 represents a per-class metric value.

𝑀𝑎𝑐𝑟𝑜 𝑋 =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛

(5)

SNOWTEC implementations were conducted in Python, leveraging PyTorch [53] and Huggingface

[51] libraries to build machine learning models12. The Graphviz library13 was used to visualise the

graph outputs. All experiments were performed using an Intel Xeon Gold 6240 GPU. More details

on entity and relation classifiers’ performance are available below.

Entity Classifier’s Performance: For entity classification, we evaluated the performance of the

proposed architecture (Figure 25) using four pre-trained transformers. The results obtained on

validation and test datasets are summarised in Table 12. As the model is fine-tuned based on the

results of validation data, which comprises a smaller subset (10% of the training data) compared to

the test data, it is expected to yield more accurate predictions on the validation set. However, the

notable discrepancy indicates the complexity of the task and suggests potential challenges arising

from data scarcity. Among the transformer models, RoBERTa-Large showcased superior

performance, exhibiting an average increase of 5% in validation F1 scores and 4% in test F1 scores

compared to all other models. This also suggests that if the language model is pre-trained on a large

corpus, it can be fine-tuned effectively for a downstream task.

Table 12. Performance evaluation of the entity classifier across validation and test datasets using

various transformer models. The best F1 score is marked in bold.

Transformer

Validation Test

P R F1 P R F1

BERT-Large 0.6182 0.5448 0.5686 0.3990 0.3511 0.3649

ELECTRA-Large 0.6838 0.5486 0.5964 0.3630 0.2882 0.3059

ALBERT-Large 0.6612 0.5825 0.6176 0.4172 0.3542 0.3791

RoBERTa-Large 0.6485 0.6335 0.6400 0.3985 0.3902 0.3922

12 SNOWTEC implementation is publicly available on https://github.com/Accord-Project/accord-nlp
13 The documentation of Graphviz is available on https://graphviz.readthedocs.io/en/stable/

https://github.com/Accord-Project/accord-nlp
https://graphviz.readthedocs.io/en/stable/

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 51

We further optimised our best-performing entity classifier, and our findings are summarised in Table

13. We primarily focused on optimising the learning rate during the hyper-parameter tuning (Annex

A). We experimented with 1𝑒−3, 1𝑒−4, and 1𝑒−6, following the initial setup of 1𝑒−5.The corresponding

training and validation curves are visualised in Figure 30. Notably, 1𝑒−4 performed on par with

1𝑒−5 but showcased better convergence. Overall, fine-tuning the learning rate resulted in a

significant 8.9% increase in validation and a 4.8% increase in test F1 scores.

Table 13. Impact on best-performed entity classifier’s (RoBERTa-Large) results by different

optimisation techniques. The best F1 score is marked in bold.

Optimisation Technique

Validation Test

P R F1 P R F1

- 0.6485 0.6335 0.6400 0.3985 0.3902 0.3922

Hyper-parameter tuning 0.7674 0.6956 0.7287 0.4827 0.4103 0.4399

Language modelling 0.7655 0.7100 0.7351 0.4635 0.4279 0.4444

Figure 30. Training and validation/evaluation learning curves of entity classifiers built using the

RoBERTa-Large model on different learning rates.

Furthermore, we applied language modelling to the RoBERTa-Large model using the regulatory text

corpus and then fine-tuned it for entity classification. As shown in Table 13, this contributed to an

additional improvement of 0.6% in validation and 0.4% in test F1 scores. These limited gains suggest

that leveraging larger text corpora for language modelling could lead to more substantial

enhancements, aligning with other recent studies. Nonetheless, our findings indicate that imparting

domain knowledge to language models helps in enhancing entity classification performance. For an

in-depth analysis, we delve into the performance of the best entity classifier in Annex B.

Relation Classifier’s Performance: For relation classification, we evaluated the performance of the

proposed architecture (Figure 26) using three pre-trained transformers. Considering the limited

performance observed during entity classification experiments, the ELECTRA-Large model was

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 52

excluded from relation classification. The summary of results obtained from both validation and test

datasets is presented in Table 14. Similar to the trends observed in the entity classifier results (Table

12), the validation set reflects more accurate predictions compared to the test set. The standard

practices of model fine-tuning based on validation outcomes and the smaller size of the validation

set compared to the test set mainly result in such trends. However, unlike the entity classifier

outcomes, no significant disparities exist between the validation and test results of the relation

classifier. This suggests the model underwent a comprehensive learning process utilising a

substantial dataset.

Table 14. Performance evaluation of the relation classifier across validation and test datasets using

various transformer models, with and without the integration of data augmentation. The best F1 score

is marked in bold. The improvement in F1 score on the test data after applying data augmentation is

indicated within brackets.

Transformer

Validation Test

P R F1 P R F1

BERT-Large 0.6129 0.4887 0.5144 0.5714 0.5029 0.5243

ALBERT-Large 0.6332 0.5393 0.5590 0.5592 0.4978 0.5122

RoBERTa-Large 0.6099 0.5895 0.5903 0.5577 0.5481 0.5498

Data Augmentation

BERT-Large 0.9215 0.9239 0.9207 0.8280 0.8161 0.8009 (+28%)

ALBERT-Large 0.9098 0.9128 0.9109 0.8060 0.7511 0.7556 (+24%)

RoBERTa-Large 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011 (+25%)

Overall, Table 14 demonstrates a significant enhancement in the performance of the relation

classifier achieved through data augmentation. On average, all models experienced a noteworthy

26% increase in F1 scores after integrating augmented data. Similar to observations in the entity

classifier scenario, among the transformer models, RoBERTa-Large exhibited superior performance.

Initially, using the original dataset, RoBERTa-Large showcased an average increase of 5.4% in

validation F1 scores and 3.4% in test F1 scores compared to other models. Even after incorporating

augmented data, RoBERTa-Large maintained its lead, exhibiting an average increase of 2.9% in

validation F1 scores and 2.3% in test F1 scores. These outcomes reinforce the notion that pre-

training a language model on a substantial corpus enables effective fine-tuning for downstream

tasks, consistent with our observations in entity classifiers. Additionally, the performance of the

BERT-Large model approached that of RoBERTa-Large following data augmentation. This

highlights that an increased volume of data for a downstream task (i.e., relation classification)

facilitates the model in learning task-specific details, minimising reliance on the original knowledge

of the language model.

We further optimised our best-performing relation classifier using the same techniques we used with

the entity classifiers (i.e., hyper-parameter tuning and language modelling). Table 15 provides an

overview of the obtained results. Under hyper-parameter tuning, we explored the model's

performance by experimenting with three additional learning rates (i.e., 1𝑒−3, 1𝑒−4, and 1𝑒−6)

subsequent to the initial setup of 1𝑒−5. However, upon reviewing the corresponding training and

validation curves depicted in Figure 31, 1𝑒−5 turned out as the optimal learning rate.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 53

Table 15. Impact on best-performed relation classifier’s (RoBERTa-Large) results by different

optimisation techniques. The best F1 score is marked in bold.

Optimisation Technique

Validation Test

P R F1 P R F1

- 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011

Hyper-parameter tuning 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011

Language modelling 0.9441 0.9461 0.9447 0.8507 0.7722 0.7922

Figure 31. Training and validation/evaluation learning curves of relation classifiers built using the

RoBERTa-Large model on different learning rates.

In language modelling, we employed the same RoBERTa-Large model trained on the regulatory text

corpus that was utilised for the entity classification experiments. Surprisingly, unlike the entity

classification results, the relation classification outcomes exhibited a slight decrease following

language modelling. This suggests a potential risk of confusion when applying language modelling

using a limited domain-specific corpus alongside a rich training dataset for the downstream task.

Overall, the application of optimisation techniques did not improve the relation classifier's

performance. We also conducted an in-depth analysis of the best relation classifier, and our findings

are discussed in Annex C.

3.3.2.3 SNOWTEC Demonstration

The final SNOWTEC pipeline (Figure 24)14 was built leveraging the best-performing entity and

relation classifiers described above (i.e., RoBERTa-Large entity and relation classifiers). It

automatically identifies entities and their relations within regulatory sentences to generate knowledge

graphs that encapsulate the conveyed information, performing rule formalisation. Table 16 presents

a selection of tested samples processed through the finalised pipeline, each accompanied by its

14 SNOWTEC live demo is available on https://huggingface.co/spaces/ACCORD-NLP/information-extractor

https://huggingface.co/spaces/ACCORD-NLP/information-extractor

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 54

generated graph. As can be seen, these graphs adeptly encapsulate the essence of the original

sentences in a structured manner. Also, these graphs serve as a machine-processable output,

meticulously capturing and processing the linguistic complexities inherent in regulatory sentences.

Ultimately, this transformation will facilitate effective Automated Compliance Checking (ACC) by

rendering complex regulatory data into a simpler format.

Table 16. Knowledge graphs generated by SNOWTEC for a set of sample sentences. In. and Out.

denotes the input to and output from the pipeline.

In. The gradient of the passageway should not
exceed 5%.

Any damage, such as tears, should be repaired
before boarding.

Out.

In. Perimeter insulation should be continuous and
have a minimum thickness of 25mm.

In a mechanical system, there shall be a clearly
labelled stop switch, which shall be located in an
easily accessible place.

Out.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 55

3.3.3 RASE-LLM: RASE Automation Leveraging Large Language Models

Useful Links:

• Text to HTML Few Shots
• Text to YAML Few Shots
• Fine-tuned Model
• RASE Automation Tool

Building codes often exhibit a complex clausal structure, spanning multiple sentences, textual

elements (e.g., bullet points), and even paragraphs. Such a design is particularly established

because building codes are written in natural language targeting domain experts. Thus, achieving

complete rule formalisation from textual sources has posed a challenge within the Architecture,

Engineering, and Construction (AEC) domain. RASE, a widely recognised approach in AEC,

addresses this challenge by capturing regulatory information from text blocks along with their

underlying clausal structure and logic [2]. It mainly transforms regulatory/normative text into well-

defined logical rules while capturing the structure and semantics embedded in the text, facilitating

Automated Compliance Checking (ACC) processes. However, to the best of our knowledge, RASE

has primarily been employed by domain experts so far as a markup language to manually annotate

regulatory text, aiming to uncover the logic implied within text documents and resolve linguistic

ambiguities to convert textual data into machine-processable formats [54]. To bridge this gap, we

proposed <rase-method>, leveraging the capabilities of Large Language Models (LLMs) to automate

the RASE annotation process.

The RASE scheme is based on four operators: (1) R - requirement, (2) A - applicability, (3) S -

selection and (4) E - exception. Requirements are the checks that need to be satisfied. They usually

appear together with imperatives such as ‘must’ and ‘shall’. The applicability identifies to which or

under which circumstance the check should be applied. Simply, it restricts the scope of the check. A

check is associated with at least one applicability. Unlike applicability, selection defines more scope

for a check. Exceptions describe when the check should be excluded. Overall, requirements and

applicabilities are common in the regulatory text, while selections and exceptions are relatively rare.

The RASE methodology for rule formalisation has three main steps. The first step is adding markup

to text based on four RASE operators, aligning with the text semantics. This step mainly focuses on

extracting the structure/arrangement of rules expressed in text, often resulting in nested tags.

Secondly, each fine-granular annotation is paired with corresponding metadata to facilitate the

generation of logical rules. This involves identifying the object, target/property, comparator, value,

and unit associated with each annotated text phrase. The final step is to transform the operators into

rules in Boolean logic, adhering to the pre-defined logical structure of RASE [2].

It is pivotal to encapsulate all the RASE tags into a structured data format to automate the annotation

process using predictive modelling. However, given that RASE was originally designed as a manual

approach for domain experts, it lacks an established machine-processable format capable of

capturing all annotated information. In response to this limitation, a novel YAML-based data format

named Building Compliance Rule Language (BCRL) has been developed as part of the ACCORD

project. More information on BCRL is available in the ACCORD deliverable 2.215. BCRL effectively

captures the document structure, context, and comprehensive RASE annotations while following a

15 ACCORD deliverable 2.2 in available on https://accordproject.eu/wp-

content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf

https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py
https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://accordproject.eu/wp-content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf
https://accordproject.eu/wp-content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 56

simple yet informative schema that can facilitate automated rule formalisation. Also, the format's

simplicity and consistent organisation, aligned with the original text's structure, emphasise its

appropriateness for human verification, which is a crucial aspect of ACC. Given all these advantages,

BCRL has been selected as the output data format for the RASE automation process, while the raw

text is used as the input data.

RASE-LLM included the development of an automated RASE annotation approach harnessing

advanced natural language understanding and generation techniques offered by state-of-the-art

Large Language Models (LLMs). This methodology primarily operates by taking raw text blocks (e.g.,

sections, chapters, or documents) as input and producing fully annotated RASE outputs in the BCRL

format, solely leveraging the capabilities of LLMs without any human intervention.

In summary, RASE-LLM’s main contributions are as follows.

1. A novel automated RASE annotation approach utilising the predictive capabilities of the state-

of-the-art Large Language Models (LLMs) to streamline rule formalisation within AEC.

2. A comprehensive evaluation procedure to assess the model’s prediction accuracy, focusing

on both structural and semantical information crucial for rule extraction.

3. A detailed experimental study to explore the LLMs' capacity to recognise intricate information

in regulatory documents, including document structure and nested rules, involving different

learning techniques.

More information about the design and development of RASE-LLM are described in Section 3.3.3.1

. Section 3.3.3.2 summarises the model performance overview and evaluation procedure. Finally in

Section 3.3.3.3 demonstrates UI and functionality of the proposed approach with sample inputs and

outputs. The interfaces presented in Section 3.3.3.3 are part of the RFT tool presentation in Section

1 and 2 representin the automatic approach of RASE tagging and regulation interpretation.

The contect of this section has been for consideration in the Nature Scientific Reports Journal.

3.3.3.1 RASE- LLM Method

This section outlines the methodologies used to automate the annotation of regulatory texts through
the RASE method. By leveraging the capabilities of LLMs, this study aimed to transform textual
descriptions of building regulations into structured YAML formats described in more details in [3],
which facilitate ACC processes.

The adopted methodology primarily operates by taking both the raw text blocks of the building
regulations and their RASE-annotated YAML counterpart data as input along with prompt
instructions to the LLMs to create similar RASE-annotated YAMLs from unseen examples of text
regulations. Two types of prompt engineering methods have been implemented: fine-tuning and
fewshot prompting. Few-shot learning is a technique whereby we prompt the LLM with several
concrete examples of task performance, in our use case examples of RASE-annotated YAML files
created from unstructured text regulations. Fine-tuning, on the other hand, is a technique whereby
we take an off-the-shelf open-source or proprietary model, re-train it on a variety of concrete
examples, and save the updated weights as a new model checkpoint. The fine-tuned model can be
deployed to create new YAML files from text regulations.

Experiment 1: Few-Shot Learning with GPT-4o (Text to YAML)

The first experiment utilized the GPT-4o model, a variant of the third-generation language models
developed by OpenAI. This model offers enhanced processing speed and efficiency due to its
optimized architecture and employs a few-shot learning approach. This approach allows the model
to generalize from a few examples to new inputs without extensive traditional training. For the setup,

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 57

we selected three examples from the dataset as few-shot prompts, providing the model with clear
input-output pairs to establish the context for the task. The input consisted of text file content, and
the output was the corresponding YAML file. The model was then tested on new, unseen text files,
converting these texts into YAML format using the context learned from the few-shot examples. The
evaluation criteria focused on the model's ability to recognize and convert intricate information in
regulatory documents, including document structure and nested rules, ensuring both structural and
semantic accuracy in the YAML conversion.

#Example 1
Input: Text file1
Output: YAML file1

#Example 2
Input: Text file2
Output: YAML file2

#Example 3
Input: Text file3
Output: YAML file3

The following are snapshots of both input and output samples:

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 58

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 59

Experiment 2: Few-Shot Learning with GPT-4o (Text to HTML)

The second experiment utilized the GPT-4o model, an advanced variant of OpenAI's third-generation
language models. This model boasts improved processing speed and efficiency thanks to its
optimized architecture and employs a few-shot learning approach. This approach enables the model
to generalize from a few examples to new inputs without requiring extensive traditional training. For
the setup, we selected three examples from the dataset as few-shot prompts, providing the model
with clear input-output pairs to establish the task's context. The input consisted of text file content,
and the output was the corresponding HTML file. The model was then tested on new, unseen text
files, converting these texts into HTML format based on the context learned from the few-shot
examples. The evaluation criteria focused on the model's ability to recognize and convert intricate
information in regulatory documents, including document structure and nested rules, ensuring both
structural and semantic accuracy in the HTML conversion.

#Example 1
Input: Text file1
Output: HTML file1

#Example 2
Input: Text file2
Output: HTML file2

#Example 3
Input: Text file3
Output: HTML file3

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 60

Experiment 3: Fine-Tuning with GPT-4o

The second experiment focused on fine-tuning the GPT-4o model, which supports customization
for specific tasks by training on a targeted dataset. For data preparation, we used 25 paired text
and YAML files derived from building regulations, selecting 15 pairs for training, 5 pairs for

validation, and reserving 5 pairs for testing. Two JSONL files, training.jsonl and

validation.jsonl, were created for the fine-tuning process, with each entry formatted to include

the system's role, user input (text file content), and assistant output (YAML file content).

The fine-tuning process involved initiating a fine-tuning job on OpenAI’s server using the prepared
JSONL files, training the model on the training.jsonl file. The fine-tuned model was then tested

on the five reserved text-YAML file pairs to evaluate its performance. Detailed results and analysis
of this testing phase are discussed in the "Model Evaluation" section.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 61

Incremental Prediction Strategy

All experiments implemented an incremental prediction strategy to overcome the token generation
limits of GPT models, which are restricted to 4096 tokens per generation. This strategy was essential
for processing lengthy regulatory documents that exceeded the model's output capacity. The
incremental prediction method is described as follows:

1. Initial Input Processing:
o The model begins by processing the initial segment of the regulatory text.
This segment is within the token limit, ensuring that the model can generate an
output without truncation.

2. Partial YAML Generation:
o The model generates a portion of the YAML output based on the initial
input. This partial YAML represents a segment of the complete conversion that
fits within the token limits.

3. Context Reinsertion:
o The generated YAML segment is then reinserted into the model's context.
This updated context includes both the initial regulatory text segment and the
corresponding generated YAML.

4. Subsequent Input Segmentation:
o The following segment of the regulatory text is appended to the updated
context. Care is taken to ensure that the combined context (previous context plus
the next segment) stays within the token limit.

5. Iterative Generation:

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 62

o The model is prompted again to continue the YAML generation from
where it left off. This iterative process involves repeatedly generating new
segments of the YAML output, reinserting them into the context, and appending
subsequent text segments until the entire document is processed.

6. Handling Long Documents:
o For particularly lengthy documents, this incremental approach ensures
that the entire text is eventually converted into YAML format, with each segment
processed and reintegrated methodically. This avoids token overflow issues and
ensures continuity in the generated output.

7. Evaluation of Continuity and Accuracy:
o At each step, the generated YAML segments are evaluated for continuity
and accuracy to ensure that the incremental predictions align seamlessly with the
previously generated segments. This evaluation helps maintain the structural and
semantic integrity of the output.

By utilizing this incremental prediction strategy, the experiments effectively managed the token
generation limits of GPT models, enabling the successful conversion of extensive regulatory texts
into YAML format without loss of information or context. This approach was particularly crucial for
ensuring the fidelity of rule extraction and the overall reliability of the automated compliance checking
processes.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 63

3.3.3.2 Model Performance Overview

In this section, we describe the evaluation metrics used to assess the performance of our models in
generating YAML files from regulatory texts. The evaluation concentrates on two main aspects:
structural similarity and text similarity. These metrics provide a thorough assessment of both the
structure and content of the generated YAML files.

Structure Evaluation (Graph Similarity):

The structural accuracy of the generated YAML files is assessed using graph similarity metrics. Each
YAML file is converted into a graph representation where nodes represent keys and values, and
edges depict the hierarchical relationships between these elements. To compute the similarity
between the generated and reference graphs, we utilize the SimGNN model, a neural network-based
approach.The process begins by converting both the generated and reference YAML files into graph
structures. Initial node embeddings are computed using Graph Convolutional Networks (GCNs),
which aggregate information from neighbouring nodes to create a detailed representation of the
graph's structure. These node embeddings are then aggregated into a single graph-level embedding
via a global context-aware attention mechanism, which calculates a global context vector for the
graph and uses it to weigh the importance of each node's embedding.

Interaction scores between graph-level embeddings are computed using a Neural Tensor Network
(NTN). Additionally, pairwise similarity scores between nodes of the two graphs are calculated, and
histogram features are extracted from these scores. Finally, graph-level interaction scores and
histogram features are combined using fully connected layers to produce a final similarity score.

To quantify the structural differences between the generated and reference graphs, we compute the
Graph Edit Distance (GED), which measures the minimum number of operations (node/edge
insertions, deletions, and relabelling) required to transform one graph into the other. The GED is
normalized and transformed into a similarity score ranging from 0 to 1 using an exponential function.

(𝜆(𝑥) = 𝑒{−𝑥}), 𝑤ℎ𝑒𝑟𝑒 (𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝐸𝐷.

Content Evaluation (Text Similarity):

The text similarity between the contents of the generated and reference YAML files is evaluated
using accuracy and adjusted accuracy metrics. The accuracy metric measures the overlap of words
between the two texts, while the adjusted accuracy accounts for differences in chunk sizes to
penalize discrepancies in text segmentation. First, the number of overlapping words between the
generated and reference texts is calculated to determine the common words. Then, the total number
of unique words in both texts combined is computed. The basic accuracy is calculated as the ratio

of common words to total unique words, defined as (accuracy(𝑥, 𝑦) =
common(𝑥,𝑦)

total(𝑥,𝑦)
)

To account for text segmentation differences, we determine the number of chunks in both the

generated ((𝑐𝑥))𝑎𝑛𝑑𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒((𝑐𝑦)) texts. The chunk penalty is then computed using the

logarithmic difference in chunk counts, normalized by the total number of chunks in the larger text

((𝑡)). This is defined as (chunk penalty(𝑐𝑥, 𝑐𝑦, 𝑡) =
log2(chunk difference(𝑐𝑥,𝑐𝑦)+1)

log2(𝑡+1)
)

Finally, the adjusted accuracy is calculated to incorporate the chunk penalty, reducing the impact of
segmentation differences. The formula for adjusted accuracy is

(adjusted accuracy(𝑥, 𝑦, 𝑐𝑥 , 𝑐𝑦, 𝑡, 𝑤) = accuracy(𝑥, 𝑦) × (1 − 𝑤 × chunk penalty(𝑐𝑥, 𝑐𝑦, 𝑡))),

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 64

Where (𝑤) is the chunk penalty weight.

Results and Discussion
This section presents and analyzes the results from the three experiments conducted to assess the
performance of the GPT-4o model in generating YAML files from regulatory text. The evaluation
focuses on two main metrics: structural similarity and text similarity.

In the first experiment, we employed a few-shot learning approach with GPT-4o, supplying the
model with three sample pairs as prompts. The model was then tasked with predicting YAML
structures for 22 test samples. The structural similarity scores for these predictions are detailed in
the following table, with an average structural similarity score of 0.69, indicating a moderate level of
structural accuracy.

0.75 0.64 0.63 0.69 0.77 0.79
0.7 0.75 0.67 0.76 0.79 0.7
0.64 0.63 0.68 0.76 0.74 0.64
0.61 0.6 0.57 0.65

The text similarity scores, also shown in the table, averaged 0.76. This higher average compared to
the structural similarity score suggests that while the model was relatively effective at capturing the
content, it had more difficulty maintaining the correct hierarchical structure.

0.81 0.79 0.77 0.75 0.74 0.74
0.85 0.7 0.75 0.84 0.73 0.79
0.69 0.73 0.72 0.75 0.83 0.68
0.8 0.69 0.79 0.78

The second experiment focused on fine-tuning the GPT-4o model using a dataset of 25 paired text
and YAML files, divided into 15 pairs for training, 5 pairs for validation, and 5 pairs for testing. The
structural similarity results for this experiment are detailed in the following table, with an average
score of 0.74. This improvement over the few-shot learning approach suggests that fine-tuning
enables the model to more effectively learn and replicate the hierarchical structures in the YAML
files.

0.78 0.67 0.78 0.70 0.78

The text similarity scores for this experiment, also shown in the following table, averaged 0.81. The
higher scores in both structural and text similarity metrics compared to the few-shot learning
approach highlight the effectiveness of fine-tuning in enhancing model performance.

0.82 0.78 0.80 0.84 0.81

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 65

 3.3.3.3 Rase Automation Tool

3.3.3.1.1 Introduction

The main target of this tool is to streamline the process of converting regulatory text files into YAML
format using an AI model. The web application integrates several components to provide real-time,
accurate conversion of regulatory texts into YAML files. The architecture of the application (Figure
32) is designed to handle user inputs, process them using an AI model, and provide the results back
to the user efficiently. The system includes a web application, a REST API, an AI model, a database,
and a Real-Time Notification Provider (RTNP).

Figure 32. RASE automation tool architecture.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 66

 3.3.3.1.3 Tool Components

1. User Interface (Web Application)

• Purpose: To allow users to interact with the tool, upload text files, and receive YAML
outputs.
• Functionality: Users upload their text files through the web interface. The web
application sends these files to the REST API for processing and displays the resulting
YAML files to the user.

2. REST API

• Purpose: To serve as an intermediary between the web application and the AI model.
• Functionality: The REST API receives text files from the web application, forwards
them to the AI model for processing, and returns the generated YAML files back to the
web application. It ensures smooth communication and data transfer within the system.

3. AI Model

• Purpose: To convert the regulatory text files into YAML format using the RASE
method.
• Functionality: The AI model, fine-tuned on a dataset of regulatory texts and YAML
files, processes the input text files and generates structured YAML outputs. The model
handles the complexities of the regulatory language and maintains the hierarchical
structure required for effective compliance checking.

4. Database

• Purpose: To store user data, input text files, and generated YAML files.
• Functionality: The database ensures that all data is securely stored and easily
retrievable. It supports the web application by providing persistent storage for ongoing
and past conversions.

5. Real-Time Notification Provider (RTNP)

• Purpose: To notify users about the status of their file processing in real time.
• Functionality: The RTNP component sends real-time notifications to users about the
progress and completion of their text file conversion. This ensures that users are kept
informed throughout the process without having to manually check the status.

3.3.3.1.4 Process Flow

1. File Upload:

 - The user uploads a text file through the web application.

2. Data Transfer:

 - The web application sends the uploaded file to the REST API.

3. AI Processing:

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 67

 - The REST API forwards the file to the AI model, which processes the file and generates the
corresponding YAML output.

4. Storage and Retrieval:

 - The generated YAML file is stored in the database, and the REST API retrieves it for the web
application.

5. User Notification:

 - The RTNP notifies the user about the completion of the conversion process, and the web
application displays the YAML file to the user.

 3.3.3.1.5 Conclusion

This tool leverages the power of AI to automate the conversion of regulatory text files into YAML
format, significantly enhancing efficiency and accuracy in compliance-related tasks. The well-
structured architecture ensures seamless operation and real-time user updates, making it a robust
solution for automated compliance checking. The screenshots of the UI for the RASE-LLM Tool are
presented in ANNEX D.

3.3.4 Resource Index

This section serves as a comprehensive index of all open-source resources, including datasets,

models and workflows, developed by the task for Artificial Intelligence for Natural Language

Processing of Building Codes within the ACCORD project.

3.3.4.1 Datasets

Dataset Description Section
Reference

CODE-ACCORD
Entities

CODE-ACCORD entity-annotated data, considering four entity
categories: (1) object, (2) property, (3) quality and (4) value

Section 3.3.1.3

CODE-ACCORD
Relations

CODE-ACCORD relation-annotated data, considering ten
relation categories: (1) selection, (2) necessity, (3) part-of, (4)
not-part-of, (5) greater, (6) greater-equal, (7) equal, (8) less-
equal, (9) less and (10) none

Section 3.3.1.3

Augmented CODE-
ACCORD Relations

Oversampled CODE-ACCORD relations dataset with a more
balanced category distribution

Section 3.3.2.2

Regulatory Text
Corpus

Raw text corpus developed utilising England's approved
document collection

Section 3.3.2.2

3.3.4.2 Pre-trained Models

Model Description Section
Reference

https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Entities
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Entities
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 68

ACCORD-NLP/
ner-roberta-large

RoBERTa large model fine-
tuned for sequence
labelling/entity classification
using the CODE-ACCORD
Entities dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
ner-bert-large

BERT large (cased) model
fine-tuned for sequence
labelling/entity classification
using the CODE-ACCORD
Entities dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
ner-albert-large

ALBERT large model fine-
tuned for sequence
labelling/entity classification
using the CODE-ACCORD
Entities dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
re-roberta-large

RoBERTa large model fine-
tuned for relation
classification using the
CODE-ACCORD Relations
dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
re-bert-large

BERT large model fine-tuned
for relation classification
using the CODE-ACCORD
Relations dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
re-albert-large

ALBERT large model fine-
tuned for relation
classification using the
CODE-ACCORD Relations
dataset

Section
3.3.2.1 and
3.3.2.2

ACCORD-NLP/
roberta-large-lm

RoBERTa large model pre-
trained on the Regulatory
Text Corpus using the
Masked Language Modelling
(MLM) objective

Section
3.2.1.2 and
3.3.2.2

ACCORD-NLP/
ner-roberta-large-lm

RoBERTa large model fine-
tuned for sequence
labelling/entity classification
using the CODE-ACCORD
Entities dataset, following
language modelling using the
Regulatory Text Corpus

Section
3.3.2.1 and
3.3.2.2

https://github.com/Accord-
Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py

https://github.com/Accord-
Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py

Few shots for both:
1. Text to HTML
2. Text to YAML

Section
3.3.3.1

https://github.com/Accord-
Project/RaseLLM/blob/main/fine_tuning_use_model.py

Fine-tuning for Text to YAML Section
3.3.3.1

https://huggingface.co/ACCORD-NLP/ner-roberta-large
https://huggingface.co/ACCORD-NLP/ner-roberta-large
https://huggingface.co/ACCORD-NLP/ner-bert-large
https://huggingface.co/ACCORD-NLP/ner-bert-large
https://huggingface.co/ACCORD-NLP/ner-albert-large
https://huggingface.co/ACCORD-NLP/ner-albert-large
https://huggingface.co/ACCORD-NLP/re-roberta-large
https://huggingface.co/ACCORD-NLP/re-roberta-large
https://huggingface.co/ACCORD-NLP/re-bert-large
https://huggingface.co/ACCORD-NLP/re-bert-large
https://huggingface.co/ACCORD-NLP/re-albert-large
https://huggingface.co/ACCORD-NLP/re-albert-large
https://huggingface.co/ACCORD-NLP/roberta-large-lm
https://huggingface.co/ACCORD-NLP/roberta-large-lm
https://huggingface.co/ACCORD-NLP/ner-roberta-large-lm
https://huggingface.co/ACCORD-NLP/ner-roberta-large-lm
https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 69

https://github.com/Accord-
Project/RaseLLM/tree/main/RASE_Automation_Tool

RASE Automation Tool (Web
Application)

Section
3.3.3.3

ACCORD-NLP/
re-roberta-large-lm

RoBERTa large model fine-
tuned for relation
classification using the
CODE-ACCORD Relations
dataset, following language
modelling using the
Regulatory Text Corpus

Section
3.3.2.1 and
3.3.2.2

3.3.4.3 Workflows

Workflow Description Section
Reference

SNOWTEC Information extraction pipeline to convert a self-contained
regulatory sentence into a knowledge graph(s) of entities and
relations

Section 0

3.3.5 Future Improvements

In the future we aim to automate the interpretation of images and tables found in the regulations and

other documents. Also, we aim to enhance the NLP models with the capability to interpret and

convert into structure graph format not only single self-contained sentences but also paragraphs of

text.

https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://huggingface.co/ACCORD-NLP/re-roberta-large-lm
https://huggingface.co/ACCORD-NLP/re-roberta-large-lm
https://huggingface.co/spaces/ACCORD-NLP/information-extractor

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 70

4. Conclusions

This deliverable has documented the outcomes of Tasks 2.4 “Artificial Intelligence for Natural

Language Processing of Building Codes” and 2.5 “Design and Implementation of Rule Formalisation

Tool” of the ACCORD project. The specified objectives have been successfully realized through the

accomplishment of the following goals:

• Creation of a web tool provided with the necessary user interfaces to allow experts in

regulations and construction codes to formalize regulatory documents in PDF format in

graphs as instances of AEC3PO ontology.

• Creation of a tool that leverages the power of AI to automate the conversion of regulatory

text files into YAML format, significantly improving efficiency and accuracy in tasks related to

regulatory compliance.

The AEC3PO is a component of the Compliance and Permitting Semantic Framework developed in

the ACCORD project reported in Deliverable 2.2, together with the rule formalisation methodology

developed in Task 2.3 and BCRL, a domain specific rule language. All these components have been

successfully implemented in the rule formalisation tool, providing a way for regulatory experts to

generate versions of regulations in a machine-processable format.

ACCORD is a pioneer in deploying LLM models for interpreting and structuring textual regulatory

content and the progress of AI based rule interpretation has gone beyond the initial aim of the project

which was limited to only identify important entities and relationships in regulatory text.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 71

5. References

[1] Z. Zhang, L. Ma and N. Nisbet, “Unpacking Ambiguity in Building Requirements to Support

Automated Compliance Checking,” Journal of Management in Engineering, vol. 39, 2023.

[2] E. Hjelseth and N. Nisbet, “Capturing normative constraints by use of the semantic mark-up

RASE methodology,” in Proceedings of CIB W78-W102 Conference, 2011.

[3] A. Dridi, E. Vakaj, P. Patlakas, H. Hettiarachchi, T. Beach, J. Yeung, G. Costa, P. Hradil and

H. Tan, “D2.2 BCO Ontology and Rules Format,” 2023.

[4] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, P. Antoine and N. Lindström, “JSON-LD 1.1,”

2020. [Online]. Available: https://www.w3.org/TR/json-ld11/. [Accessed 2024].

[5] C. W. E. &. A. R. Pautasso, REST: Advanced Research Topics and Practical Applications, New

York: Springer, 2014.

[6] S. Fuchs and R. Amor, “Natural language processing for building code interpretation: A

systematic literature review,” in Proceedings of the Conference CIB W78, 2021.

[7] C. D. Manning, P. Raghavan and H. Schu¨tze, Introduction to Information Retrieval, Cambridge

University Press, 2008.

[8] Y.-C. Zhou, Z. Zheng, J.-R. Lin and X.-Z. Lu, “Integrating NLP and context-free grammar for

complex rule interpretation towards automated compliance checking,” Computers in Industry,

vol. 142, 2022.

[9] T. H. Beach, Y. Rezgui, H. Li and T. Kasim, “A Rule-Based Semantic Approach for Automated

Regulatory Compliance in the Construction Sector,” Expert Systems with Applications, vol. 42,

p. 5219–5231, 2015.

[10] J. Zhang and N. M. El-Gohary, “Semantic NLP-Based Information Extraction from Construction

Regulatory Documents for Automated Compliance Checking,” Journal of Computing in Civil

Engineering, vol. 30, 2016.

[11] J. Zhang and N. M. El-Gohary, “Integrating semantic NLP and logic reasoning into a unified

system for fully-automated code checking,” Automation in Construction, vol. 73, pp. 45-57,

2017.

[12] P. Zhou and N. El-Gohary, “Ontology-based automated information extraction from building

energy conservation codes,” Automation in Construction, vol. 74, pp. 103-117, 2017.

[13] R. Zhang and N. El-Gohary, “A deep neural network-based method for deep information

extraction using transfer learning strategies to support automated compliance checking,”

Automation in Construction, vol. 132, 2021.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 72

[14] X. Wang and N. El-Gohary, “Deep Learning-Based Named Entity Recognition from

Construction Safety Regulations for Automated Field Compliance Checking,” in Computing in

Civil Engineering 2021, 2021, pp. 164-171.

[15] X. Wang and N. El-Gohary, “Deep learning-based relation extraction and knowledge graph-

based representation of construction safety requirements,” Automation in Construction, vol.

147, p. 104696, 2023.

[16] Y. Shen, X. Wang, Z. Tan, G. Xu, P. Xie, F. Huang, W. Lu and Y. Zhuang, “Parallel Instance

Query Network for Named Entity Recognition,” in Proceedings of the 60th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), 2022.

[17] A. Plum, T. Ranasinghe, S. Jones, C. Orasan and R. Mitkov, “Biographical Semi-Supervised

Relation Extraction Dataset,” in Proceedings of the 45th International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2022.

[18] Y. Shen, Z. Tan, S. Wu, W. Zhang, R. Zhang, Y. Xi, W. Lu and Y. Zhuang, “PromptNER: Prompt

Locating and Typing for Named Entity Recognition,” in Proceedings of the 61st Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), 2023.

[19] S. Yang, M. Choi, Y. Cho and J. Choo, “HistRED: A Historical Document-Level Relation

Extraction Dataset,” in Proceedings of the 61st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2023.

[20] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” in Proceedings of the 2019 Conference of the

North {A}merican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019.

[21] OpenAI, “GPT-4 Technical Report,” ArXiv, 2023.

[22] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Amatriain and J. Gao, “Large

Language Models: A Survey,” ArXiv, vol. abs/2402.06196, 2024.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I.

Polosukhin, “Attention is All you Need,” Advances in Neural Information Processing Systems,

vol. 30, 2017.

[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V.

Stoyanov, “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” CoRR, vol.

abs/1907.11692, 2019.

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut, “ALBERT: A Lite BERT

for Self-supervised Learning of Language Representations,” International Conference on

Learning Representations, 2020.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 73

[26] T. Ranasinghe, C. Orasan and R. Mitkov, “TransQuest: Translation quality estimation with

cross-lingual transformers,” in Proceedings of the 28th International Conference on

Computational Linguistics, 2020.

[27] K. Nassiri and M. Akhloufi, “Transformer models used for text-based question answering

systems,” Applied Intelligence, vol. 53, pp. 10602--10635, 2023.

[28] A. Merchant, E. Rahimtoroghi, E. Pavlick and I. Tenney, “What Happens To BERT Embeddings

During Fine-tuning?,” in Proceedings of the Third BlackboxNLP Workshop on Analyzing and

Interpreting Neural Networks for NLP, 2020.

[29] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa, “Large language models are zero-

shot reasoners,” Advances in neural information processing systems, vol. 35, pp. 22199--

22213, 2022.

[30] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P.

Shyam, G. Sastry, A. Askell and others, “Language models are few-shot learners,” Advances

in neural information processing systems, vol. 33, pp. 1877--1901, 2020.

[31] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou and others,

“Chain-of-thought prompting elicits reasoning in large language models,” Advances in neural

information processing systems, vol. 35, pp. 24824--24837, 2022.

[32] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun and H. Wang, “Retrieval-

augmented generation for large language models: A survey,” ArXiv, vol. abs/2312.10997, 2023.

[33] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K.

Slama, A. Ray and others, “Training language models to follow instructions with human

feedback,” Advances in neural information processing systems, vol. 35, pp. 27730--27744,

2022.

[34] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,

E. Hambro, F. Azhar and others, “LLaMA: Open and efficient foundation language models,”

arXiv preprint arXiv:2302.13971, 2023.

[35] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.

Chung, C. Sutton, S. Gehrmann and others, “PaLM: Scaling language modeling with

pathways,” Journal of Machine Learning Research, vol. 24, pp. 1--113, 2023.

[36] D. Jurafsky and J. H. Martin, Speech and Language Processing (2Nd Edition), Prentice-Hall,

Inc., 2009.

[37] T. Perry, “LightTag: Text Annotation Platform,” in Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations, 2021.

[38] L. Ramshaw and M. Marcus, “Text Chunking using Transformation-Based Learning,” in Third

Workshop on Very Large Corpora, 1995.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 74

[39] A. Bastos, A. Nadgeri, K. Singh, I. O. Mulang, S. Shekarpour, J. Hoffart and M. Kaul, “RECON:

Relation Extraction Using Knowledge Graph Context in a Graph Neural Network,” in

Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 2021.

[40] Z. Zheng, Y.-C. Zhou, X.-Z. Lu and J.-R. Lin, “Knowledge-informed semantic alignment and

rule interpretation for automated compliance checking,” Automation in Construction, vol. 142,

p. 104524, 2022.

[41] S. Fuchs, M. Witbrock, J. Dimyadi and R. Amor, “Neural Semantic Parsing of Building

Regulations for Compliance Checking,” IOP Conference Series: Earth and Environmental

Science, vol. 1101, p. 092022, 2022.

[42] H. Hettiarachchi, M. Adedoyin-Olowe, J. Bhogal and M. M. Gaber, “TTL: transformer-based

two-phase transfer learning for cross-lingual news event detection,” International Journal of

Machine Learning and Cybernetics, 2023.

[43] L. Baldini Soares, N. FitzGerald, J. Ling and T. Kwiatkowski, “Matching the Blanks:

Distributional Similarity for Relation Learning,” in Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics, 2019.

[44] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura and E. Hovy, “A Survey

of Data Augmentation Approaches for NLP,” in Findings of the Association for Computational

Linguistics: ACL-IJCNLP 2021, 2021.

[45] C. Shorten, T. M. Khoshgoftaar and B. Furht, “Text data augmentation for deep learning,”

Journal of big Data, vol. 8, pp. 1--34, 2021.

[46] S. Longpre, Y. Wang and C. DuBois, “How Effective is Task-Agnostic Data Augmentation for

Pretrained Transformers?,” in Findings of the Association for Computational Linguistics:

EMNLP 2020, 2020.

[47] D. Jin, Z. Jin, J. T. Zhou and P. Szolovits, “Is BERT Really Robust? A Strong Baseline for

Natural Language Attack on Text Classification and Entailment,” Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, pp. 8018-8025, 2020.

[48] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang and others,

“Pre-trained models: Past, present and future,” AI Open, vol. 2, pp. 225-250, 2021.

[49] H. Hettiarachchi and T. Ranasinghe, “Explainable Event Detection with Event Trigger

Identification as Rationale Extraction,” in Proceedings of the 14th International Conference on

Recent Advances in Natural Language Processing, 2023.

[50] K. Clark, M.-T. Luong, Q. V. Le and C. D. Manning, “ELECTRA: Pre-training Text Encoders as

Discriminators Rather Than Generators,” in International Conference on Learning

Representations, 2020.

[51] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M.

Funtowicz and others, “Transformers: State-of-the-Art Natural Language Processing,” in

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 75

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:

System Demonstrations, 2020.

[52] H. Nakayama, “seqeval: A Python framework for sequence labeling evaluation,” 2018. [Online].

Available: https://github.com/chakki-works/seqeval.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga and others, “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” in Proceedings of the 33rd International Conference on Neural Information

Processing Systems, 2019.

[54] N. Nisbet, L. Ma and G. Aksenova, “Presentations of rase knowledge mark-up,” in Proceedings

of the European Conference on Computing in Construction, 2022.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 76

Annex A. SNOWTEC: Model Hyper-parameters

We used a common hyper-parameter setup summarised in Table 17 to generate comparable results

while maintaining consistency among different entity and relation classification architectures. We

also believe these parameters will provide a basis for future experiments. However, depending on

the training data availability, we set the evaluation steps to eight for the entity classifier and 16 for

the relation classifier, allowing five and 15 evaluations per epoch, respectively. These evaluations

were conducted on a validation split of 10% of training data while using the remaining 90% for

training.

Table 17. Hyper-parameter specifications

Parameter Value

Learning rate 1𝑒−5

Batch size 16

Number of epochs 5

Early stopping patience 10

Maximum sequence length 128

Optimiser Adam optimiser

Our experiments involved two model optimisation techniques: (1) hyper-parameter tuning and (2)

language modelling. During hyper-parameter tuning, we particularly focused on optimising the

model's learning rate. Our initial experiments revealed that adjusting this parameter yielded a more

noticeable impact on the final results compared to others. More details about hyper-parameter tuning

are discussed together with each classifier’s results in Section 3.3.2.2. For language modelling, we

used the maximum sequence length of 128 following the sequence length distribution in Figure 29.

We set the batch size to 16 and the learning rate to 3𝑒−5 with Adam optimiser, following our initial

experiments. We allowed the model to train on 25 epochs with an early stopping patience of 10,

considering the sensitivity of this task.

Annex B. SNOWTEC: Error Analysis of Entity Classifier

The best-performed entity classifier’s (i.e. RoBERTa-Large with language modelling) results were

further analysed to identify the causes of its performance limitations. Our analysis revealed two major

factors: (1) unique attributes of entity categories and (2) contextual complexities that directly affect

the model performance, as elaborated below.

Impact by unique attributes of entity categories: In entity classification, we aim to identify four

categories (i.e. object, property, quality and value) defined in the CODE-ACCORD dataset (Section

3.3.1.2), which hold their unique characteristics. For instance, objects and values were mostly

formed by one or two tokens/words. Additionally, a high proportion of values have numbers mostly

coupled with units. In contrast, properties and qualities have a composition of short and long text

sequences. Overall, qualities have more lengthy text spans than all other categories. We showcase

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 77

a few randomly selected entities from each category in Table 18 to further emphasise their distinctive

attributes. Table 19 presents the outcomes of our analysis regarding the model's predictive

performance for each entity category. Objects and values, the entity categories characterised by

more definitive structures with shorter sequences, demonstrated comparatively higher F1 scores, as

evident from the results. Since values have the fewest annotated samples, these results suggest

that the integrity of the entity structure has more influence on the model's learning than the sample

count. This fact is further confirmed by the results obtained under quality. Even though quality has

more annotated samples (× 6 than value samples), it resulted in the lowest F1 score due to its

complex structure. Overall, our findings suggest that the inherent nature or structure of an entity

category significantly influences the learning process of a transformer-based entity classifier, often

surpassing the impact of the sample count within the training data.

Table 18. Entity categories with a few samples

object property quality value

building height mechanical one

doors width insulated 900mm

parking spaces U-values wheelchair-accessible 500 millimetres

windows target primary energy rate for entering a dwelling 0.7 metres

ventilation systems floor area insulated at ceiling level 0.15m/s

Table 19. Results of the best-performed entity classifier (RoBERTa-Large) on validation and test

datasets across different entity categories

Category

Validation Test

Support P R F1 Support P R F1

object 146 0.7955 0.7192 0.7554 317 0.5212 0.5047 0.5128

property 48 0.6154 0.6667 0.6400 98 0.4750 0.3878 0.4270

quality 139 0.7281 0.5971 0.6561 317 0.3805 0.3817 0.3811

value 28 0.9231 0.8571 0.8889 48 0.4773 0.4375 0.4565

Macro Average 361 0.7655 0.7100 0.7351 780 0.4635 0.4279 0.4444

Impact by the contextual complexities: In natural language, the organisational structure of textual

elements within a context significantly influences entity identification. To measure contextual

complexity in our experiments, we adopted the entity count within a sentence, where a higher count

denotes a more detailed and intricate context. Table 20 provides a summary of the entity classifier's

performance variations based on contextual complexities. As can be seen, the model demonstrates

heightened accuracy in identifying entities within simpler contexts or those with fewer entities.

Conversely, sentences with a high number of entities, often indicating longer and more complex

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 78

structures, yield less accurate results. Overall, the model may require exposure to more data to

effectively grasp intricate contextual structures and improve the prediction performance of complex

sentences.

Table 20. Results of the best-performed entity classifier (RoBERTa-Large) on test datasets

depending on the entity count per sentence.

Entity Count Category Support P R F1

≤ 3 object 70 0.6494 0.7143 0.6803

property 17 0.6429 0.5294 0.5806

quality 87 0.4674 0.4943 0.4804

value 7 0.5000 0.4286 0.4615

Macro Average 181 0.5649 0.5416 0.5507

> 3 𝑎𝑛𝑑 ≤ 5 object 100 0.5500 0.5500 0.5500

property 44 0.5000 0.4091 0.4500

quality 103 0.3846 0.4369 0.4091

value 19 0.5556 0.5263 0.5405

Macro Average 266 0.4975 0.4806 0.4874

> 5 object 147 0.4231 0.3741 0.3971

property 37 0.3667 0.2973 0.2973

quality 127 0.3028 0.2598 0.2797

value 22 0.4000 0.3636 0.3810

Macro Average 333 0.3731 0.3237 0.3465

Annex C: SNOWTEC: Error Analysis of Relation Classifier

The best-performed relation classifier’s (i.e. RoBERTa-Large with data augmentation) results were

further analysed to identify the factors that hinder its performance. The overall assessment displayed

consistent performance across all relation categories, with a validation F1 score exceeding 80%, as

depicted in Table 21. Although there were slight declines in the greater-equal and less-equal

categories in the test set, given their association with a relatively small sample count, these drops

can be deemed negligible. Altogether, these findings suggest that the relation category has no

notable impact on the model's final performance.

Table 21. Results of the best-performed relation classifier (RoBERTa-Large) on validation and test

datasets across different relation categories

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 79

Category

Validation Test

Support P R F1 Support P R F1

equal 77 0.9625 1.0000 0.9809 15 0.7143 1.0000 0.8333

greater 57 1.0000 1.0000 1.0000 11 0.8182 0.8182 0.8182

greater-equal 89 0.9889 1.0000 0.9944 21 0.7273 0.7619 0.7442

less 9 1.0000 1.0000 1.0000 2 1.0000 1.0000 1.0000

less-equal 73 0.9865 1.0000 0.9932 14 0.6842 0.9286 0.7879

necessity 82 0.8902 0.8902 0.8902 206 0.9167 0.8544 0.8844

none 80 0.8592 0.7625 0.8079 200 0.8289 0.7750 0.8010

not-part-of 13 1.0000 1.0000 1.0000 2 0.6667 1.0000 0.8000

part-of 65 0.8657 0.8923 0.8788 162 0.7910 0.8642 0.8260

selection 93 0.8947 0.9140 0.9043 233 0.8498 0.8498 0.8498

Macro Average 638 0.9448 0.9459 0.9450 866 0.7997 0.8352 0.8011

Secondly, we explored the misclassifications to identify potential confusion between relation

categories. This in-depth analysis revealed that complex textual structures influence the model's

performance, leading to misclassification. Details of these findings are outlined below.

Figure 33. Confusion matrix of the best-performed relation classifier (RoBERTa-Large) on the test

dataset

Impact by complex textual structures: The confusion matrix of the best-performed relation

classifier on the test dataset is illustrated in Figure 33. This matrix exhibits clear patterns, confirming

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 80

the model's overall strong performance. Diagonal dominance signifies a majority of accurate

predictions, accompanied by low off-diagonal values, which indicate minimal misclassification.

However, we further investigated the misclassifications (particularly, the off-diagonal values above

10) to understand the factors contributing to the model's confusion. Our analysis pinpointed that most

of these instances of confusion arose from complexities within the textual structure. To explain this

finding, we summarise the frequently identified textual complexities in Table 22 together with relevant

data samples.

Table 22. Frequently misclassified relations with identified causes and samples

True
Label

Predicted
Label

Sample Reason

necessity none Any <e1>walls</e1>, doors and windows should be insulated
and <e2>draught-proofed</e2> to at least the same extent as
in the existing building.

multiple
necessities

Ground arrays including <e1>header pipes</e1> and
manifolds should be <e2>flushed as one system to remove
all debris and purged to remove all air</e2>.

none part-of The <e1>roof structures</e1> and <e2>joints</e2> must be
properly inclined and sealed for water drainage.

conjoined
elements

The natural or mechanical <e1>ventilation system</e1> of a
building shall be strong and its <e2>air-tightness</e2> shall
be at least class B.

coreferences

none selection There shall be <e1>adequate means</e1> of ventilation
<e2>provided for people in the building</e2>.

hierarchical
relationships

The air extract rate should be 20 litres per second per
<e1>machine</e1> <e2>during use</e2>.

selection none In an existing building, for the principal or <e1>main
staff</e1> entrance or <e2>entrances</e2> to be accessible,
an alternative accessible entrance should be provided.

multiple
selections

A building must be provided with a fire wall if <e1>it</e1> is
situated adjacent to a neighbouring building or <e2>so close
to a neighbouring building that the spread of fire is
evident</e2>.

selection part-of <e1>Requirements</e1> for <e2>accessibility</e2> should
be balanced against preserving historic buildings or
environments.

confusing text
patterns

The <e1>impact</e1> of the <e2>ground</e2> and crawl
space on heat loss shall be taken into account in heat loss
calculations.

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 81

Annex D: RASE-LLM Tool Interface

Figure 34. Login Screen

Figure 35. Sign Up Screen

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 82

Figure 36. Change Password

Figure 37. Projects List

D2.3 Rule Formalisation Tool and AI V1.2

GA No: 101056973 83

Figure 38. Add Project

Figure 39. Project output (YAML Editor)

