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Executive summary 

This deliverable presents the results of Tasks 2.4, “Artificial Intelligence for Natural Language 

Processing of Building Codes”, and 2.5 “, Design and Implementation of Rule Formalisation Tool”, 

of the ACCORD project. 

The aim of the ACCORD project is to digitalise building permitting and compliance procedures to 

improve the quality and productivity of design and construction processes and support the 

development of a sustainable built environment. This is achieved by adopting a semantic approach 

where different individual software components are combined to create flexible solutions that 

eliminate the need for expensive centralized systems that are difficult to establish and manage. 

Building on the results achieved in Tasks 2.1, “Technical Review of Existing Standards”, 2.2, 

“Technical Review of Existing Standards”, and 2.3, "Machine-executable Regulations”, where 

existing ontologies, standards and data models in the construction data domain have been analysed, 

a methodology has been proposed to digitize and formalize regulations. The results of its application 

are instances of the Architecture Engineering and Construction Compliance Checking Ontology 

(AEC3PO) – an ontology created to represent the building compliance data domain – together with 

Building Compliance Rule Language (BCRL) – a domain-specific rules language to express checking 

rules – this deliverable will report the tasks related to the development of a Rule Formalisation Tool 

(RTF) which encompasses and integrates all these concepts, included the Artificial Intelligence (AI)-

powered Rule Formalisation for Building Codes. 

More specifically, this deliverable: 

1. Provides a description of the design, architecture, and development of the RFT. 

2. Introduces an AI-driven approach to formalising building code standards. 
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Publishable summary 

This deliverable presents the results of Tasks 2.4, “Artificial Intelligence for Natural Language 

Processing of Building Codes”, and 2.5, “Design and Implementation of Rule Formalisation Tool” of 

the ACCORD project. 

The aim of the ACCORD project is to digitalise building permitting and compliance procedures to 

improve the quality and productivity of design and construction processes and support the 

development of a sustainable built environment. This is achieved by adopting a semantic approach 

where different individual software components are combined to create flexible solutions that 

eliminate the need for expensive centralized systems that are difficult to establish and manage. 

Building on the results achieved in Tasks 2.1, “Technical Review of Existing Standards”, 2.2 

“Technical Review of Existing Standards” and 2.3 “Machine-executable Regulations”, where existing 

ontologies, standards and data models in the construction data domain have been analysed, a 

methodology has been proposed to digitize and formalize regulations. The results of its application 

are instances of the Architecture Engineering and Construction Compliance Checking Ontology 

(AEC3PO) – an ontology created to represent the building compliance data domain – together with 

Building Compliance Rule Language (BCRL) – a domain-specific rules language to express checking 

rules – this deliverable will report the tasks related to the development of a Rule Formalisation Tool 

(RTF) which encompasses and integrates all these concepts, included the Artificial Intelligence (AI)-

powered Rule Formalisation for Building Codes. 

More specifically, this deliverable: 

1. Provides a description of the design, architecture, and development of the RFT. 

2. Introduces an AI-driven approach to formalising building code standards. 
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1. Introduction 

1.1 The ACCORD Project 

The ACCORD project aims to provide a framework for the digitalisation of building permitting and 

compliance processes, using Building Information Modelling (BIM), Geographic information systems 

(GIS), and other data sources. The end goal is to improve the productivity and quality of design and 

construction processes. ACCORD is based on the principle that these digitised processes must be 

human-centred, transparent, and cost-effective for the permit applicants and authorities and, above 

all, relevant to the industry within which they are to be employed. 

To address this challenge, ACCORD proposes developing a semantic framework for European 

digital building permitting processes, regulations, data, and tools. This framework will drive the 

formalisation of regulations into a set of rules and the integration of existing tools to check compliance 

with building codes and regulations as microservices in a dynamic ecosystem. Software solutions 

will be developed, providing consistency, interoperability and reliability with municipal, regional, 

national, and international regulatory frameworks, processes, and standards. 

Building codes and regulations often involve complex language and technical jargon that can be 

difficult to understand and apply in practice. This ambiguity can lead to different possible 

interpretations. This reality represents a challenge for the development of automation processes to 

check compliance with regulations. One way to address this challenge may be through a 

semantisation carried out through a process of formalisation of regulations described in plain text 

into machine-readable documents using a domain-specific rule language.  

Semantic Web technologies, ontologies, and semantic rule languages provide a foundation for 

creating a solution aligned with this semantisation approach. Also, Artificial Intelligence (AI) methods, 

such as Natural Language Processing (NLP), can be used to extract and analyse compliance 

requirements from natural language text in an automated way. This process of transforming natural 

language into machine-readable data with explicit meaning can also help address this challenge by 

creating structured representations of regulations that can be exchanged and processed by 

computers.  

1.2 Aims and Objectives 

This deliverable reports the results of tasks involved in the implementation of the rule formalisation 

process that takes place in WP2. These tasks include the implementation of developed concepts, 

such as the methodology to formalise regulations as instances of the AEC3PO together with the 

BCRL language. The generated graphs, according to the AEC3PO ontology, are represented in 

Resource Description Framework (RDF) format and are aimed to be used in automated code 

compliance (ACC) processes. The knowledge graph includes rules extracted from the textual data, 

such as building codes, standards, and regulations.  

This deliverable reports the outcomes of Tasks 2.4 “Artificial Intelligence for Natural Language 

Processing of Building Codes” and 2.5 “Design and Implementation of Rule Formalisation Tool” of 

the ACCORD project. The overall aim of this work is to provide the implementation of the method to 

perform the rule formalisation process, elaborated in the previous tasks of WP2, to formalise building 

codes and regulations by converting them into RDF graphs representing instances of the AEC3PO 

ontology. 
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The objectives of these tasks are: 

1. Task 2.4: Implementation of the AI-driven rule formalisation elements for building codes. 

2. Task 2.5: Implementation of the Rule Formalisation tool. 

3. Tasks 2.4 and 2.5: Evaluation of the outcome of the tool testing, including the AI-driven rule 

formalisation part for building codes. 

1.3 Structure of the document 

The remainder of this document is organised into two sections: 

• Section 2 introduces the rule formalisation tool developed in ACCORD. This starts with a general 

description of the tool in Section 2.1, followed by the steps to formalise regulations through the 

different interfaces implemented in the tool in Section 2.2. Section 2.3 contains a description with 

specific functionalities to help the user define the rules. The tool’s architecture and components 

are described in Section 2.4. Finally, the process and results of testing and a focus group activity 

to evaluate the tool are documented in Section 2.5, and possible future improvements and 

additional developments are presented in Section 2.6. 

• Section 3 introduces an AI-powered rule formalisation suite, leveraging recent advancements in 

NLP. The section provides a comprehensive overview of the background, design and 

implementation approaches, and findings of this development. Section 3.1 introduces the 

concept of rule formalisation, presenting a summary of previous approaches and outlining 

ACCORD’s objectives within the context of state-of-the-art technologies. Subsequently, Section 

3.2 elaborates further on the recent trends in NLP that this development has followed. Finally, 

Section 3.3 details various sub-components developed by ACCORD to facilitate automatic rule 

formalisation. 
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2. Rule formalisation tool 

2.1 Overview 

The purpose of the rule formalisation tool is to provide a means for technicians working in public 

administrations, such as city councils and other governmental bodies responsible for generating 

building codes and regulations in European countries, to be able to formalise the regulations 

provided in plain text documents into a machine-processable format according to a semantic data 

schema, an ontology, with the purpose of it becoming a standard. 

This rule formalisation process has already been defined in Task 2.3 “Machine-executable 

Regulations” and reported in Deliverable D2.2 “BC Ontology and Rule Format” under the name 

Regulation Digitalisation Methodology (Figure 1). The tool integrates components already defined in 

this Task 2.3 and developed in Task 2.2 “Development of the Building Compliance Ontology”. These 

components are the AEC3PO ontology and the BCRL language. The tool also integrates an 

automated annotation process using NLP techniques, which is described in section 3. This process 

has been implemented within an autonomous and separate service that is invoked from the tool. 

 

Figure 1. Diagram showing the rule formalisation process elaborated in Task 2.3. 

As can be seen in Figure 1, the tool covers the entire formalisation process, from uploading a PDF 

file of a regulation by the user, to obtaining the result: an RDF graph generated as an instance of the 

AEC3PO ontology, and which is published to an external rules database. 

The rule formalisation tool has been implemented as a web application where users can register and 

create projects for each regulation to be transformed into machine-processable format. The usual 

data such as name, surname, email address, etc. are requested during registration (see Figure 2). 

Once registered, the user can begin to perform several actions to carry out rule formalisation process 

for one or more regulations. The following section 2.2 details how this process is carried out in the 

tool from the user's perspective and, in parallel, the processes that are carried out internally. 
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Figure 2. Screenshots of the login and register interfaces. 

 

2.2 Process to formalise regulations in the rule formalisation tool 

The process of formalizing a regulation through the tool is carried out through 4 stages: creation, 

annotation, validation, and publication, where a specific interface is provided for each of them. The 

steps carried out in each of these stages are described below: 

Step 1: Project definition 

The first step is to create a project. Within the tool, a user can create multiple projects. The idea is 

to create a project for each regulation that is going to be formalized.  

When creating a project, the tool asks the user to define the following fields: 

• The name of the project. 

• The URL of the regulation (for example, the URL of the original public official website). 

• The publication date (this may be the date of its official publication or can also be the date 

of a new version of the graph due to errors or other amendments for example). 

• A short code (can be some kind of abbreviation, code name of the regulation, or a 

classification category for example). 

• The scope (International, National, Regional, and Municipal). 

• The Country where the regulation applies (in case of National, Regional, or Municipal). 

• Regulation language. 

• Measure system (Metric or Imperial). 

• A summary or description of the regulation. 

Step 2: Uploading the regulatory document 

This is a simple step that involves uploading the regulation document in PDF format (Figure 3). 
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Figure 3. Screenshot of the interface to upload a pdf document. 

Step 3: Choosing manual or automatic annotation 

Once the regulatory document has been uploaded in PDF format, the tool offers the user two options 

to annotate the text using the Requirement Application Selection Exception (RASE) [1, 2] method: 

(1) from scratch, or (2) obtain a proposal with the annotation already made on the text (Figure 4). 

The second option involves utilising AI to automatically apply the RASE method. Details about this 

service, which includes other additional functionalities, are provided in section 3.  

 

Figure 4. Screenshot of the interface to select the manual or automatic annotation. 

Step 4: Annotation 

If the user selects the manual option, the tool provides a view of the document like those shown by 

most PDF viewers (see Figure 5). The intention is for the user to start with a familiar view of the 

document, where text justification and the content per line are maintained to provide the same view 

as in the PDF viewer as much as possible. However, as the user begins to select parts of the text, 

applying the RASE method, the original formatting is replaced with the new RASE formatting. 
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Figure 5. Screenshot of how the PDF document looks in a regular PDF viewer. 

The interface provides eight buttons to annotate the regulatory text using the RASE method. There 

are four buttons to define clauses and subclauses according to whether they refer to a Requirement, 

Application, Selection, or Exception. Then, there are four more buttons to select parts of the text 

based on these same categories to define objects, properties, or references to other parts of the text 

of the regulation or to another document (see Figure 6). The interface also provides another button 

to create sections. Therefore, when the user selects, for example, the title of a section of the 

regulation, the tool automatically creates a section from this point in the text to the next defined 

section. If none has been defined, the section includes all the text that follows the title. 

Figure 6 shows an example of how the user views the regulatory text before starting the annotation 

process while Figure 7 shows the result after applying the RASE method to the same text shown in 

the current part of the interface. Tagging options through the interface are explained in section 2.3. 
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Figure 6. Screenshot of the interface to apply the RASE method manually where the annotation has 

not yet been applied. 

 

Figure 7. Screenshot of the interface to apply the RASE method manually after the annotation has 

been applied showing RASE boxes (filled colour) and RASE tags (only a coloured outline, no fill). 
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The annotation interface includes a text box just to the right of the regulatory text, which displays the 

text that is selected for tagging, or which has already been tagged before but the user has selected 

it by clicking on it. Linked to this aspect, the interface also has a “Remove” button that allows the 

user to remove the current RASE tag from the selected text (see red boxes in Figure 8). Since there 

are three levels of RASE tagging (text, box, section), the user must assume that deleting a higher 

level will also delete all included tagging. For example, deleting a section (by selecting the title) also 

means deleting all existing tagging in the text belonging to that section. 

 

Figure 8. Screenshot of the interface to apply the RASE method manually, highlighting the selection 

and remove button for the selected content. 

If, in step 3, the user selects the option to automatically apply the RASE method using AI tools, then 

instead of performing all the annotation manually, they will only need to correct/extend the annotation 

generated by the AI. 

Step 5: BCRL validation 

Once the user is sure that the text is correctly tagged according to the RASE method, the next step 

is to validate the BCRL expressions in terms of correctness in the definition. BCRL is a language 

developed within the ACCORD project introduced in [3] with a grammar generated with Another Tool 

for Language Recognition (ANTLR)1 for building compliance checking purposes. The tool has been 

designed to accept definitions in BCRL that comply with its grammar. However, it may happen that 

authors provide an expression incorrectly. For example, the expression of a rule may indicate that a 

property value must be higher than a specific reference value when in reality, the text is indicating 

that this value should be lower (e.g., “:Width < 1500” instead of  “:Width > 1500”). 

 

1 https://www.antlr.org/  

https://www.antlr.org/
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To facilitate this review process in a more visual way, the user will see a table with rows that will 

include the text involved in the assignment and the corresponding BCRL expression (Figure 9). This 

provides users with a view that allows them to view only the rules and the text from which they 

originate to ease the process of review.   

 

Figure 9. Screenshot of the interface to validate the BCRL expressions. 

Step 6: Publishing 

Once the user has validated the result, the next step is to publish it in the rule database, a component 

developed outside the scope of this tool and, therefore, provided externally. This way, when the user 

pushes the publish button, the graph will be stored as an RDF graph in this rule database which is a 

semantic triple store (Ontotext GraphDB).  

When the user clicks on the validate button, the tool transforms the tagged RASE file into an 

AEC3PO instance that is represented as a graph described in the JSON-LD format [4]. 

The graphs are uniquely identified in the database by their URI. This URI is composed of different 

parts, according to its characteristics, as described below: 

• Base URI: This part is common for all the graphs to be uploaded to the rule database (e.g.,  
https://graphdb.accordproject.eu/resource/aec3po/). However, this part can be modified in 
the user settings interface if a user wants to connect to another possible alternative rule 
database. 

• Country Code: It involves the country code where the regulation applies (e.g., FI), or it may 
include the continent code (e.g., EU if it is a regulation that applies at a European level). 

https://graphdb.accordproject.eu/resource/aec3po/


 

D2.3 Rule Formalisation Tool and AI V1.2 

 

GA No: 101056973                                                                                                                   18 

• Classification: This field may contain a short text that identifies the regulation in some way. 
Its purpose is to differentiate one regulation from another in the same country or even when 
they are of the same type.  

• Language: It involves the language code in which the regulation is specified (e.g., en-GB) 
since the same regulation can be provided in different languages. 

• Publication date: In principle, this is the date the graph is published. However, this date can 
be selected by the user due to certain reasons described below. The date is expressed 
according to ISO 8601 standard. 

This way, the URL is configured like this:  

https://graphdb.accordproject.eu/resource/aec3po/${country}/${classifier}/${language}/${date} 

The following example URL could be one for a published graph: 

https://graphdb.accordproject.eu/resource/aec3po/FI/ACC/en-GB/2024-09-08  

The fields that form the URI cannot be edited directly by the end user in this interface except for the 

publication date. The reason for this is that commonly, a graph of the regulation is published at a 

different time than when the regulatory text has been officially published. Thus, the user needs to be 

able to enter the official publication date. 

The interface provided by the tool to perform this step also offers the user the option to download 

the graph in JSON-LD format2 (see Figure 10). 

 

Figure 10. Screenshot of the interface to create or select a project. 

 

2 https://json-ld.org/  

https://graphdb.accordproject.eu/resource/aec3po/$%7bcountry%7d/$%7bclassifier%7d/$%7blanguage%7d/$%7bdate%7d
https://graphdb.accordproject.eu/resource/aec3po/FI/ACC/en-GB/2024-09-08
https://json-ld.org/
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The tool has another interface where the user can create or select one of the projects previously 

created, being able to resume the process of formalising the regulation from the last stage (creation, 

annotation, validation, or publication) where this was left (Figure 11). Apart from resuming the 

process where the user left off by clicking on the “arrow” button, the parameters of a project can be 

edited by clicking on the configuration button, as well as deleted by clicking the “Delete” button.  

 

Figure 11. Screenshot of the interface showing the list of projects already created by the user. 

2.3 Functionalities to assist in the generation of rules 

The rule formalisation tool has been designed as a web interface tool that combines some typical 

functionalities, such as user registration and configuration, while others are specific. Once registered, 

the user can follow the process described above in the previous section 2.2. However, to carry out 

the specific tagging part of the RASE process, some additional functionalities are provided to assist 

in rule generation.  

The challenge tackled by the development of the interface has been to try to simplify the extraction 

of rules that must be specified in BCRL expressions. This extraction is complex since it implies that 

the user is familiar with this language, an aspect that is not common and that implies that an 

RASE/BCRL expert assists the user in carrying out this task. To try to avoid this to a certain extent, 

an additional form is provided on the right side of the interface aimed at simplifying these actions 

and trying to abstract the user from the BCRL expressions in most cases. Below is a detail of how 

these functionalities have been implemented through a panel that appears on the right side of the 

interface. 

After the user has selected a text and clicked on one of the Requirement, Application, Selection, or 

Exception buttons, a panel appears offering three main options for the user to choose from “object”, 

“property”, or “reference”, which are described below:  
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1. Object. The user can select this option when they wish to indicate that the regulatory text 

selected refers to the definition of an object (Figure 12). In BCRL expressions, objects are defined 

through the following expression: “type == :Name_of_the_object.” in the screenshot 

above. The name of the object can correspond to the word selected in the text or the user can 

provide a different object name if required .  

 

Figure 12. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining 

an object. 

2. Property. The user can select this option when they wish to indicate that the selected regulatory 

text selected refers to a property (Figure 13). In this case, the tool tries to populate the input 

automatically, for the user to review. To do this, the tool has three internal lists:   

• A list containing typical properties used in the AEC domain (e.g., height, width, weight). This 

way, if a property name is contained in the selected text, this will be proposed as the default 

property name. 

• A list containing comparison operators, for example “more than, >” or “should not be less, 

>=”. If the selected text contains any expression from the list, then the associated operator is 

selected by default.  

• A list containing names of units. If the selected text contains any expression from the list, 

then the associated unit name is selected by default. 

The name of the units is not restricted nor defined in BCRL expression. However, the tool makes 

sure that the name of the unit is valid by checking it against a list of accepted names. Also, the 

tool distinguishes whether a property is Boolean and, in this case, removes the part 

corresponding to the units from the panel. 
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Figure 13. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining 

a property. 

3. References. There are situations in regulatory text where some articles or clauses refer to other 

parts of the text, whether it is a specific piece of information, a clause, or an entire section. It may 

also happen that these references refer to an external document. To make this relationship 

explicit, the user can select this option (Figure 14). For the first case, the tool provides a 

mechanism to allow the user to create an internal link to other content at the RASE text, RASE 

box or Section level. The mechanism includes an option so that when the reference has been 

made, the user can identify it by displaying the referred content framed within a rectangle with a 

red frame. For the second case, the tool provides a text field for the user to provide a URL or the 

name of the regulation being referenced.  
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Figure 14. Screenshot of the interface with the RASE TEXT tagging panel in the right side: defining 

a reference. 

RASE visualization and annotation actions are performed on an HTML file that is stored within the 

application. All modifications are automatically saved in this file. This involves any tagging action, 

whether creating RASE BOX clauses or tagging words or parts of text and confirming them. 

Therefore, it is not necessary to perform the entire tagging process at the same time. The user, for 

example, can perform tagging of one section one day and continue with other sections another day. 
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2.4 Architecture and components 

As it is shown in Figure 15, the architecture of the rule formalisation tool consists of three main layers: 

(1) Data layer, (2) Business Logic Layer, and (3) Presentation Layer. These layers and their 

components are explained below. 

 

Figure 15. Diagram showing the architecture of the Rule Formalisation Tool. 

Layers: 

• Data Layer. It includes all the data involved and necessary for the management of projects for 

the formalisation of regulatory texts. This includes the management of the different files that must 

be created internally during the formalisation process depending on the stage for each user. The 

database has been implemented using the MySQL software package. 

• Business Logic Layer. This is divided into two parts or sublayers:  

1. Internal Services Layer. It contains the modules with major functionalities of the tool. Three 

of them provide file management functionality, database connection, and GUI connection. 

The other three provide functionalities to transform one content into another depending on 

the stage of the formalisation process as follows: 

a. PDF Reader: It converts the content of a PDF document provided by a user into plain 

text, maintaining a content layout similar to the original view by using whitespace 

characters. The output is a file in text format. 

b. TEXT to HTML: It converts a plain text into an HTML document to enable the conduct 

of the RASE tagging process. 

c. HTML to AEC3PO: Converts an HTML document tagged with the RASE method into 

instances of the AEC3PO ontology that include the corresponding relationships with 

the rules in BCRL language. 
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2. Communications Service Layer. It provides the link to the external modules of the tool and 

provides the communication between the data layer and them. The communication logic layer 

provides the mechanisms for obtaining data from the data layer and for introducing data into 

it from such external modules, acting as a middleware. External services are: (1) NLP Service 

and (2) Building Codes and Regulations API. This last service provides the connection with 

the semantic triple store (graphDB) where the graphs are stored. This communication is 

provided via API REST [5]. 

• Presentation Layer. It works as a point of interaction between the tool and the user. It provides 

the necessary functionality for the user to perform all the actions indicated in the formalisation 

process described in the previous section 2.2, through the corresponding interfaces. 

2.5 Testing and results 

2.5.1 Description 

To evaluate the operation and user experience in the current prototype of the tool, the focus group 

method was chosen. A small group composed of four participants from four different partners of the 

project consortium was selected. All of these were familiar with or had some knowledge, experience, 

or connection with the area of elaboration, definition and/or application of regulations in building 

projects. However, to provide a “blind” test of the tool, no prior training was given about the use of 

the rule formalisation tool. This method was chosen to enable us to gather a true first impression of 

the use of the tool by reasonably qualified users. 

The activity was performed in three stages: 

1. Testing the tool: this exercise was designed to last approximately 30 to 45 minutes maximum, 

and it consisted of asking participants to carry out the process of formalising a regulation through 

the rule formalisation tool. To do this, each participant had to register in the tool and follow a 

series of steps from uploading a PDF of the regulation to publishing the graph in the rules 

database. The same PDF document was provided to all participants to be able to compare the 

results. 

To carry out the exercise, a set of files were provided to carry out the test: 

a) A document with the instructions. 

b) A PDF document with the regulations that participants had to use. 

c) An HTML document with the RASE markup already applied that they had to use as a 

reference to try to reproduce the same tagging through the tool, since the test was not aimed 

at assessing their knowledge of the RASE method but rather the ability of the tool to apply it. 

2. Evaluation of results: It was carried out through a questionnaire via Microsoft Forms, which all 

participants had to complete immediately after completing the exercise with the tool. The 

questions focused on collecting data of interest for evaluating the experience with the tool and 

for the focus group session. 

3. Focus group session: This was the final step of the activity and the one most closely linked to 

the concept of focus group. This exercise consisted of bringing together all the participants in a 

session where the most relevant aspects for the evaluation of the experience in carrying out the 

exercise through the tool were discussed in a common and guided manner. 
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2.5.2 Results 

The testing and focus group activity was carried out by four participants, a woman and three men, 

with different profiles: an architect (participant 1), a researcher (participant 2), and two software 

developers (participants 3 and 4). The questionnaire consisted of two different types of questions: 

(1) assessment by scoring and (2) text description.  

Evaluation questions were proposed to assess the tool in various aspects (previous user experience, 

functionality, usability, etc.) with a score between 1 and 5 (Table 1). 

Table 1. Result of the questionnaire for rating questions. 

Question 
Rating 

par. 1 

Rating 

par. 2 

Rating 

par. 3 

Rating 

par. 4 

Rating 

Average 

What is your knowledge and expertise in the field of definition 

and specification of building codes and regulations on a scale 

from 1 (beginner) to 5 (very expert)? 

4 2 4 1 2.75 

What is your expertise and knowledge in the field of 

application of building codes and regulations on a scale from 

1 (beginner) to 5 (very expert)? 

4 3 4 3 3.50 

What is your knowledge and expertise in the RASE method 

on a scale from 1 (neophyte) to 5 (very expert)? 
4 2 1 1 2.00 

What is your knowledge about the BCRL language on a scale 

from 1 (no knowledge) to 5 (full knowledge)? 
3 2 1 3 2.25 

To what extent would you be able to perform the RASE 

tagging in a new regulation autonomously, without 

instructions, on a scale of 1 (impossible) to 5 (affordable)? 

4 4 1 2 2.00 

Please indicate whether you have had problems for tagging a 

text or word indicated in the instructions on a scale of 1 

(never) to 5 (frequently)? 

1 1 5 3 2.50 

To what extent would you be able to perform the RASE 

tagging in a new regulation autonomously, without 

instructions, on a scale of 1 (impossible) to 5 (affordable)? 

4 2 1 1 2.00 

Based on the experience gained from this exercise, what do 

you consider to be the tool’s ability to provide the 

formalization of a regulation on a scale from 1 (very 

cumbersome process) to 5 (easy to do)? 

4 3 1 2 2.50 

To what extent do you think this tool could be useful for law 

and policy makers on a scale from 1 (useless,) to 5 (totally 

useful)? 

5 3 1 2 2.75 

Key findings that can be summarised from the questions are: 

1. Several users encountered minor bugs and issues in tagging the text using the RASE method. 

2. Most participants who had no previous experience with the RASE method would have struggled 

to apply it independently or would find its application easy to do. 
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3. The level of previous experience in the application of the RASE method is directly linked to how 

useful participants feel the tool will be for law and policymakers. 

The questionnaire results were discussed in the focus group session, which, in large part, focused 

on how to reduce the need to carry out the rule formalisation process with the assistance of a RASE 

expert.  

Based on the feedback gathered from the questionnaire and the focus group, the following actions 

have been agreed: 

1. All bugs and issues identified will be corrected – this has already been completed. 

2. Training material on the RASE method will be created to guide new users of the tool in completing 

the digitisation process. 

A final piece of feedback from the focus group was that using AI to automatically apply the RASE 

method and review the results will be key to easing the tool's adoption. However, it is important to 

note that knowledge of the RASE method will still be required to ensure users are able to accurately 

and confidently check the results generated by the AI process. 

2.6 Future improvements 

Although the tool meets all the functional requirements for which it was designed, fulfilling its 

purpose, several improvement actions can be implemented in the future. The most relevant ones 

are described below according to each category. 

• Connection to bSDD: The buildingSMART Data Dictionary (bSDD) is a service for sharing 

definitions for describing the built environment to help agents of the AEC industry use agreed 

and consistent terms3. These definitions and relations are necessary to facilitate automation in 

the application of microservices developed within the ACCORD framework. Currently, existing 

tools allow the definition of the dictionaries required by the rule formalisation process in bSDD. 

Thus, to avoid re-creating existing tools, this has not been implemented within the RFT. In the 

future, it may be desirable to provide an interface within the tool for convenience. However, it 

should be noted that this task should probably be performed by a user with different knowledge 

and more familiar with the data structure of the IFC model. 

• Multiple languages: Although the tool allows a user to upload files in different languages, the 

language of the interface is only in English. Therefore, one improvement would be to provide the 

interfaces in different languages. 

• Larger evaluations with actual potential users: Regardless of whether the tool continues to 

develop throughout the project, new tests will need to be carried out aimed at a broader audience 

to give greater validity to the usefulness of the tool in each of the aspects to be assessed. 

 

  

 

3 https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/  

https://www.buildingsmart.org/users/services/buildingsmart-data-dictionary/
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3. AI-powered Rule Formalisation for Building Codes 

Compliance checking is integral within the Architecture, Engineering, and Construction (AEC) sector 

to ensure the safety, stability, reliability, and usability of building designs. Conventionally, compliance 

checking relied on manual methods, which proved to be labour-intensive, time-consuming, 

expensive, and error-prone [6]. Thus, there has been a significant shift towards Automated 

Compliance Checking (ACC), which has been extensively studied over the past 50 years [1]. The 

aim of ACC is to enhance the accuracy and productivity of compliance-checking processes while 

addressing the shortcomings of manual approaches and meeting the evolving demands of the 

industry. 

Primarily, compliance checking is a two-fold process. Initially, it requires identifying the relevant 

building codes or regulatory requirements applicable to a building design, followed by verifying 

compliance against these requirements. Comparatively, the second phase is less challenging for 

automation, given that modern building designs are typically generated using computer software, 

resulting in digital or machine-processable formats. However, a significant challenge arises from the 

fact that building codes are mainly written in textual documents intended for human consumption, 

such as domain experts. Natural languages are hard for computers to process automatically due to 

their unstructured nature and inherent complexities arising from human-centred design [7]. These 

challenges are further amplified in the regulatory texts by their complex structures, ambiguities, and 

domain-specific characteristics. Thus, in enabling ACC, formalising, or interpreting the information 

conveyed in regulatory text into machine-processable formats emerged as a pivotal and complex 

phase [8]. 

To address this critical need, an AI-powered rule formalisation suite, leveraging recent 

advancements in NLP, has been developed as part of the ACCORD project. This section provides 

a comprehensive overview of the background, design and implementation approaches, and findings 

of this development. Section 3.1 introduces the concept of rule formalisation, presenting a summary 

of previous approaches and outlining ACCORD's objectives within the context of state-of-the-art 

technologies. Subsequently, Section 3.2 elaborates further on the recent trends in NLP that this 

development has followed. Finally, Section 3.3 details various sub-components (i.e., data, AI models 

and workflows) developed by ACCORD to facilitate automatic rule formalisation. The outputs 

presented in Section 3 can be used as stand alone models and tools or integrated in other tools as 

exemplified by the RFT of ACCORD.   

3.1 Rule Formalisation 

Formalisation is a process of refining something into a more precise and structured format. In the 

context of Architecture, Engineering, and Construction (AEC), rule formalisation particularly involves 

converting regulatory information, typically written in text, into a structured or standardised 

representation that computers or machines can readily understand and process. This conversion is 

essential to automate the compliance checking processes. Moreover, it improves the clarity and 

consistency of information, thereby facilitating more effective knowledge base generation. 

Previous research within AEC has proposed various approaches for rule formalisation from text, 

aiming to enhance the effectiveness of ACC. In early work, manual methods were popularly used for 

this task due to text complexities and domain-specific demands [2, 9]. However, the labour-intensive 

nature of manual approaches and their limitations in efficiently supporting ACC prompted a shift 

towards automating information extraction utilising NLP and Machine Learning (ML) techniques. This 

shift mainly introduced rule-based approaches for text formalisation [10, 11, 12]. Despite their 
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performance, rule-based methods inherently lacked adaptability and flexibility, heavily relying on 

domain-specific characteristics [13]. Their accuracy highly depended on manually crafted rules, 

requiring extensive domain expertise. These limitations have encouraged a transition within rule 

formalisation methods towards ML techniques, leveraging predictive models to capture textual 

information rather than relying on laborious handcrafted rules. 

According to recent ML-based research, adopting deep-learning techniques has emerged as a 

promising avenue for rule formalisation. Bidirectional Long Short-Term Memory (Bi-LSTM) and 

Convolutional Neural Network (CNN) architectures have been commonly used in extracting 

information from regulatory text due to their proficiency in learning long-term dependencies and 

contextual features [14, 15]. However, the approaches proposed within the AEC sector for rule 

interpretation exhibit notable gaps, particularly in light of recent advancements in the NLP domain. 

In NLP, Language Models (LMs) have gained significant recognition, showcasing state-of-the-art 

performance across various tasks, including information extraction from text [16, 17, 18, 19]. Overall, 

LMs represent a significant advancement in text processing with their sophisticated ability to capture 

text's contextual details and transfer pre-trained knowledge to downstream tasks, outperforming the 

models based on Recurrent Neural Network (RNN) architectures [20, 21]. Within the ACCORD 

project, our primary focus has been on bridging the gap between the AEC and NLP domains by 

proposing and exploring LM-based approaches for rule formalisation. 

3.2 NLP Background 

Within the Natural Language Processing (NLP) domain, there is a clear shift towards deep learning 

and language modelling-based text processing approaches across various applications. The 

improved text encoding and decoding using the advanced embedding techniques capable of 

automatically capturing underlying linguistics stands as a major driving force behind this 

transformation. During this transformation, both pre-trained Language Models (which are also known 

as transformers), and Large Language Models (LLMs) attracted wide attention from the NLP 

community recently following their more robust language understanding capabilities [22]. ACCORD 

is a pioneer in the use of LM-based approaches applied to AEC ACC rule formalisation.  

3.2.1 Language Models/Transformers 

Transformers are deep neural networks which utilise the attention mechanism to capture text’s 

contextual details and long-range dependencies [23]. Their invention is a remarkable milestone in 

neural language modelling, following their capability to capture the influence on each word by 

another, notably enhancing natural language understanding. There are three main types of 

transformer architectures, namely encoder-only, decoder-only and encoder-decoder models. 

However, this work only utilised encoder-only models following its requirements in rule formalisation, 

and the following text will refer to such models as transformers for simplicity. 

The encoder-only models primarily target encoding text into numerical representations that hold the 

underlying linguistics and contextual information. These models are originally built for language 

understanding tasks, such as text classification, in which the model requires predicting a label given 

the input text [22]. Following the general transformer encoder architecture, different model variants 

such as BERT [20], RoBERTa [24] and ALBERT [25] were proposed with the ability to generate 

contextual text representations and fine-tune for downstream tasks by transferring the pre-trained 

knowledge. These capabilities allowed the transformer-based architectures to achieve state-of-the-

art results in many complex NLP tasks such as information extraction [18, 17], machine translation 

[26] and question answering [27]. 
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3.2.1.1 Transformer Architecture 

The transformer architecture consists of multi-layer bidirectional encoders that utilise the self-

attention mechanism [23] to produce language representations which capture underlying linguistics 

and the context, as illustrated in Figure 16. It processes a sequence of text (e.g., sentence) and 

outputs representations/embeddings that correspond to the entire sequence and its tokens, which 

can be used to learn downstream tasks while conserving the original text's linguistic features. 

 

Figure 16. Transformer encoder architecture 

Transformer Input Format: The transformer encoder takes a text sequence or a text sequence pair 

as its input, enabling it to handle diverse downstream tasks. It uses special tokens, including [CLS] 

and [SEP], to organise the input text. [CLS] is the initial token, which indicates the beginning of the 

sequence. [SEP] is the separator to be placed in between if the input has two sequences. After this 

raw text formatting, a tokeniser converts the sequence into a token embedding. In addition to the 

token embedding, a segment and a position embedding are required to format the input. The sum of 

these three embeddings constitutes the transformer's input. The segment embedding contains 

Boolean values (i.e., 0 and 1) indicating the separation of sequences/segments. The position 

embedding contains sequential numbers starting from 0, which specify each token's position within 

the sequence. 

Transformer Output Format: The transformer encoder generates representations/embeddings per 

token in the input sequence. The output of the initial token ([CLS]) is an embedding representing the 

complete input sequence. It can be used for sequence-based predictions/classifications. Similarly, 

other outputs are token embeddings corresponding to each input token, which form contextual 

word/token embeddings that can be used with token-based predictions/classifications. The 

transformer architecture needs to be modified by including an additional layer, like a classification 

head suitable for the targeted task, on top of the output layer to fine-tune the model for a downstream 

task. 
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3.2.1.2 Learning Methods 

Unlike other deep neural networks, transformers undergo two training steps according to their 

design: (1) pre-training/language modelling and (2) fine-tuning. 

1. Pre-training/language Modelling: In the pre-training phase, a language model is built by 

training the transformer architecture on unlabelled textual data or free text. Therefore, pre-

training is also known as language modelling. There are two commonly used pre-training 

approaches: (1) masked language modelling (MLM) and (2) next sentence prediction (NSP) 

[20]. The MLM approach randomly masks a portion (e.g., 15%) of the input tokens and then 

trains the model to predict the masked tokens. This task helps to learn bidirectional 

representations by training the model to predict masked tokens in a multi-layered context 

while focusing on both directions. NSP is a binary prediction task that focuses on recognising 

whether a sentence pair appears consecutively in a monolingual corpus. This task mainly 

helps the model to understand the relationships/interconnections between sentences. 

Among these two techniques, MLM is commonly used by various transformer architectures, 

such as RoBERTa [24] and ALBERT [25], as it was found to be competitive. Thus, we also 

involve MLM in language modelling within this work. 

2. Fine-tuning: Fine-tuning is usually conducted by targeting a downstream task. To train a 

transformer for a downstream task, an appropriate layer(s), such as a classification head, 

needs to be added to the top of the transformer's output layer, depending on the targeted 

task. During this process, the model initialises using its pre-trained parameters and then gets 

fine-tuned for the targeted task utilising the task-specific labelled data. The initialisation with 

pre-trained parameters commences the learning process with the model's original knowledge 

and facilitates the effective learning of the downstream task. Fine-tuning can be applied to all 

model parameters (i.e., parameters of the transformer and its additional layers) or only to the 

additional layers. According to previous research, fine-tuning the transformer together with 

its newly-added layers obtained the best results for downstream tasks, as this approach 

adjusts the weights in the entire architecture, including the generic language model focusing 

on a particular task or domain-specific data rather than only fine-tuning the task-specific 

layers [28]. Thus, our approach also follows the entire fine-tuning process. More details about 

the modifications we made to the transformer architecture to support different text 

classification tasks within this effort are described in Section 3.3. 

3.2.2 Large Language Models 

Large Language Models (LLMs) are transformer-based language models with a vast number of 

parameters pre-trained on extensive text corpora [22]. In contrast to conventional language models 

or transformers, LLMs not only have larger model sizes but also demonstrate superior natural 

language understanding and generation capabilities, largely attributed to their extensive pre-training 

on massive free text datasets. LLMs also exhibit emergent capabilities that are not available in 

smaller-scale models or transformers, including (1) instruction following, (2) in-context learning, and 

(3) multi-step reasoning [22]. 

1. Instruction Following: Instruction following enables the model to perform a new task solely 

based on the given instructions without seeing any explicit examples [29]. This process is 

also referred to as zero-shot learning. In this setup, the quality of outputs heavily relies on 

the model’s pre-trained knowledge and the clarity of instructions. 

2. In-context Learning: In-context learning allows the LLM to learn a new task by only seeing 

a small set of examples provided through the prompt during inferencing [30]. This technique 

is also known as few-shot learning. This approach is particularly useful for complex tasks that 
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are challenging to explain without examples. Also, this helps mitigate data scarcity issues by 

requiring only a few samples for task learning. 

3. Multi-step Reasoning: Multi-step reasoning provides LLM with the ability to solve a complex 

problem or task by breaking it down into a series of intermediate reasoning steps, also known 

as the chain of thoughts [31]. This strategy allows the model to solve simplified versions of 

the original task at each step, leading to the final output. 

Moreover, LLMs are also capable of augmenting their knowledge using external sources [32] and 

improving themselves using reinforcement learning from human feedback [33], enabling them to 

effectively handle new tasks. 

With the rapid advancement of LLM development, several model families have emerged as 

prominent players in the field. Among them, GPT, LLaMA and PaLM represent three popular 

families. Generative Pre-trained Transformer (GPT) models, developed by OpenAI, are decoder-

only language models [21]. This family consists of various model versions, with the latest being GPT-

4, released in 2023. Currently, GPT-4 is widely regarded as the most powerful model within this 

family, featuring the ability to process multi-modal data. LLaMA comprises a set of foundational 

language models developed by Meta [34]. Unlike GPT models, LLaMA models are openly available, 

making them accessible to a wider community.  Even though the first LLaMA model was released in 

2023, the family has now expanded to include several model variants, such as LLaMA, Alpaca, 

Koala, and more, showcasing significant growth. Pathway Language Models (PaLM), developed by 

Google, represent another notable family of LLMs [35]. Similar to the LLaMA models, PaLM models 

are free to use; however, they remain closed-source like GPT. Leveraging pretraining on extensive 

high-quality text corpora and a vast number of parameters, PaLM models exhibit robust multilingual 

and reasoning capabilities. 

Even though LLMs are still in their early stages of development, they have gained tremendous 

popularity within the NLP community and beyond, emerging as general task resolvers, as showcased 

by Microsoft Co-Pilot. The rapid pace of advancement in this field introduces new models, strategies 

and findings within weeks or months. As a result of it, there is no established optimal approach for 

leveraging LLMs to perform a particular task. Also, researchers face challenges in identifying the 

most effective setups following this rapid growth. Therefore, our work also focuses on exploring 

various strategies to develop the most effective LLM-powered systems, as detailed in Section 3.3. 

3.3 ACCORD-NLP Data, AI Models and Workflows 

3.3.1 CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards 

Automatic Compliance Checking 

Useful Links: 

• GitHub Repository 

• Hugging Face (Datasets) 
• Annotation Manual 

 

Since building regulations are written in textual documents within the AEC sector, extracting 

information from textual rules to facilitate rule formalisation has been a challenge due to the 

complexities associated with natural languages. Recent NLP developments, especially with deep 

neural networks and language models, have overcome most existing challenges, surpassing 

traditional information extraction approaches.  However, having annotated data as ground truth is 

crucial to train and evaluate such advanced models. Yet, to the best of our knowledge, there are no 

https://github.com/Accord-Project/CODE-ACCORD
https://huggingface.co/ACCORD-NLP
https://github.com/Accord-Project/CODE-ACCORD/blob/main/annotated_data/Annotation_Strategy_V1.0.0.pdf
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readily available datasets within the AEC sector to support complete information extraction from 

regulatory text. We compiled CODE-ACCORD, following this requirement to empower the capacity 

to involve recent trends in NLP for ACC. 

CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of 

England and Finland. As a self-contained sentence, we refer to a regulatory sentence that expresses 

a rule and contains all the details itself without any linguistical co-references that are unresolvable 

within the sentence, references to external sources or incomplete/ambiguous concepts. Such 

sentences are essential for ACC as they express rules that can be directly extracted and interpreted 

without extensive cross-referencing or additional context. Aligned with our core objective of 

facilitating information extraction from text for machine-processable rule generation, each sentence 

was annotated with entities and relations. Entities represent specific components such as ‘window’ 

and ‘smoke detectors’, while relations denote semantic associations between these entities, 

collectively capturing the conveyed ideas in natural language. We manually annotated all the 

sentences using a group of 12 annotators. Each sentence underwent annotations by multiple 

annotators and subsequent careful data curation to finalise annotations, ensuring their accuracy and 

reliability, thereby establishing the dataset as a solid ground truth. 

In summary, CODE-ACCORD’s main contributions are as follows: 

1. A novel data annotation approach to extract regulatory information from text covering entities 

and their semantic relations, which are integral for understanding the ideas conveyed in 

natural language. 

2. An Entity-annotated dataset in English, sourced from a subset of England’s and Finland’s 

building regulations, which underwent a rigorous data annotation and curation process. 

3. A Relation-annotated dataset in English, sourced from a subset of England’s and Finland’s 

building regulations, which underwent a rigorous data annotation and curation process. 

More details about the CODE-ACCORD’s data collection methodology are described in Section 

3.3.1.1. Subsequently, Section 3.3.1.2 details the data annotation methodology. Finally, the 

information of datasets compiled by this effort together with data statistics, are included in Section 

3.3.1.3. Also, the CODE-ACCORD approach and its findings have been submitted to the Data in 

Brief Journal, which is currently under review4.  

3.3.1.1 Data Collection Methodology 

CODE-ACCORD consists of the English Building Regulations and the English translation of the 

Finnish National Building Code, as we aimed to build a corpus in English5. In both countries, text 

regulations are published in PDF documents and available online to the public. 

Table 2 presents a statistical overview of the approved documents. However, CODE-ACCORD 

excluded England’s approved documents C, D, H and J from further processing due to some 

complex formatting associated with them. 

  

 

4 CODE-ACCORD journal preprint is available on https://arxiv.org/pdf/2403.02231 
5 The primary data were collected from the official websites of the UK Department for Levelling Up, Housing 

and Communities and the Ministry of Housing, Communities & Local Government, and the National Building 

Code of Finland from the Ministry of Environment. 

https://arxiv.org/pdf/2403.02231
https://www.gov.uk/government/collections/approved-documents
https://www.gov.uk/government/collections/approved-documents
https://ym.fi/en/the-national-building-code-of-finland
https://ym.fi/en/the-national-building-code-of-finland
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Table 2. Building codes of England and Finland 

Country Approved Document/Decree # Volumes # Pages 

England A: Structure 1 54 

B: Fire Safety 2 384 

C: Site preparation and resistance to contaminates and moisture 1 52 

D: Toxic Substances 1 10 

E: Resistance to Sound 1 86 

F: Ventilation 2 110 

G: sanitation, hot water safety and water efficiency 1 55 

H: drainage and waste disposal 1 64 

J: Combustion appliances and fuel storage systems 1 89 

K: Protection from falling, collision and impact 1 68 

L: Conservation of fuel and power 2 220 

M: Access to and use of buildings 2 143 

O: Overheating 1 44 

P: Electrical safety 1 22 

Q: Security in dwellings 1 20 

R: Infrastructure for electronic communications 2 56 

S: Infrastructure for charging electric vehicles 1 47 

Material and workmanship: Approved Document 7 1 24 

Finland Accessibility 1 6 

Fire Safety 1 25 

Energy Efficiency 1 18 

Planning and Supervision 1 7 

Strength and Stability of Structures 1 55 

Safety of Use 1 9 

Health (Indoor Climate; Water and sewerage; and Humidity) 3 16 

Acoustic Environment 1 4 

Total  33 1688 
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Figure 17. CODE-ACCORD semi-automatic data preparation approach 

To extract the text date from the documents and prepare them for data annotation, a semi-automatic 

approach, as shown in Figure 17, is followed. It mainly contains two phases: (1) document 

processing and (2) sentence processing. Document processing primarily focused on converting PDF 

files to TXT files while preserving the textual structure and information. Initially, this step converted 

PDF files to TXT files using the PDFMiner library6. Then, the TXT files were further processed by 

removing line breaks, footnotes, tables, figures, and unnecessary sections to have the cleaned 

versions ready for sentence processing. Sentence processing is mainly aimed at extracting and 

filtering sentences for the entity and relation annotations, following the three steps below.  

1. Sentence Splitting: This step splits the regulatory text into individual sentences, allowing 

the next steps to process sentences. 

2. Sentence Filtering: During this step, the sentences were automatically filtered to extract 

sentences containing rules based on three distinct features. 

a. Qualitative Requirements: Qualitative requirements are specific conditions 

expressed numerically or with quantitative terms. These requirements often specify 

precise values, measurements, or numerical criteria that must be met to ensure 

compliance with the regulations. Examples of quantitative requirements may include 

keywords such as ‘less than’, ‘greater than’, ‘equal’, ‘at least’, ‘higher than’, ‘more 

than’ and ‘lower than’, followed by numerical values or thresholds. The quantitative 

requirements are considered since they are mostly used in building codes for 

describing requirements [8].  

b. Subjective Requirements: Subjective requirements are stipulations that involve the 

use of subjective language or expressions. These requirements are not defined by 

precise numerical values or measurements but rather by language that conveys 

recommendations, preferences, or suggestions. Subjective requirements often 

include terms like ‘should be’, ‘recommended’, ‘preferred’ or ‘advisable’. While 

subjective in nature, these requirements are important in building regulations as they 

allow for flexibility and adaptation to different situations while still providing a 

framework for best practices and quality standards. To the best of our knowledge, 

 

6 PDFMiner documentation is available on https://pypi.org/project/pdfminer/ 

https://pypi.org/project/pdfminer/
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existing research in the field of applying NLP for the automation of building regulations 

has not addressed subjective requirements in their analyses, methodologies, or 

datasets [8]. 

c. Deontic Logic: Deontic logic refers to the logic that deals with the expression of 

permissions, obligations, prohibitions, and other normative statements. It is used to 

represent rules and requirements that are binding or mandatory, such as rules that 

specify what ‘must’, ‘shall’, ‘could’ or ‘prohibit’ within building regulations. Deontic logic 

plays a crucial role in modelling the normative aspects of these regulations, providing 

a formal framework to represent and reason about mandatory and discretionary 

requirements. Similar to subjective requirements, deontic logic has not been 

extensively considered in previous research efforts. This is primarily due to the focus 

of most research on quantitative requirements, given their higher frequency within 

building regulations [8]. 

3. Sentence classification: The final step classified each filtered sentence as a self-contained 

or non-self-contained sentence. This was performed manually to remove any false positive 

sentences identified during the sentence filtering step. A self-contained sentence is a 

regulatory sentence that expresses a rule and contains all the details itself without any 

linguistical co-references that are unresolvable within the sentence, references to external 

sources or incomplete/ambiguous concepts. Following this step, all non-self-contained 

sentences were excluded from the sentence collection. 

Completing the data preparation approach resulted in a self-contained sentence collection ready for 

the manual entity and relation annotation process, as summarised in Table 3.  

Table 3. Statistical summary of data collection 

Country Sentence Count Self-contained Sentence Count 

England 19201 963 

Finland 1473 283 

Total 20674 1246 

 

3.3.1.2 Data Annotation Methodology 

Since CODE-ACCORD’s primary focus is facilitating information extraction from regulatory text 

required for rule formalisation, two key types of information: (1) entities and (2) relations, which are 

essential for comprehending the ideas conveyed in natural language [36], were aimed during data 

annotation. Our annotation group contained 12 annotators with either a computer science or a civil 

engineering/construction background. Since this work targets the automation of compliance 

checking using machine learning concepts, we believe it is important to involve experts from both 

areas in the annotation process. To collect human annotations, we used the LightTag text annotation 

platform [37], considering its text annotation coverage, including entities and relations, project 

management support and user-friendly interfaces.  

We conducted the entity and relation annotations in rounds. Before moving into the actual rounds, 

there were two test rounds using a team of two annotators to refine the annotation strategy. Once 

the strategy was finalised, there were seven rounds for actual annotations. Each sentence was 

annotated by two to three annotators through these rounds. Given the complexity associated with 

annotations due to the multi-step annotation process, which is further explained below, each 
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annotation round is followed by a curation round to determine the final annotations. Three members 

joined as data curators, and their curation jobs were assigned without overlaps with the annotation 

jobs. During curation, the curator decided on the final annotation for all entities and relations with 

disagreements between annotators, considering the proposed annotations. More details about entity 

and relation annotation approaches are described below.  

Entity Annotation: Entities are specific pieces of information or concepts that can be categorised. 

Or, simply, they are anything that can be referred to using a proper name [36].  Following the idea 

proposed in [8] [13], we picked four named entity categories, described in Table 4, for entity 

annotation. However, deviating from previous work, CODE-ACCORD adopted a simple category 

structure, mainly aiming at the generalisability of our annotation approach across different 

subdomains, such as structure, fire safety and accessibility, and information coverage, when defining 

the named entities. A two-step annotation process: (1) mark entity text spans and (2) assign entity 

categories was used for entity annotations, and annotations are conducted in rounds as described 

above. A few annotated samples are shown in Table 5. As can be seen, the selected categories are 

versatile enough to capture all entities in different sentence structures. Also, these samples are from 

Accessibility and Fire Safety regulations to indicate the general applicability of our annotation 

strategy in different subdomains. 

Table 4. Entity categories. A colour theme is used to enhance the clarity of the sample annotations 

given in this document. 

Category Description 

object An ontological concept which represents a thing that is subject to a particular requirement 
(e.g., window, fire door) 

property Property of an object (e.g., width, height) 

quality Quality or uncountable characteristic of an object/property (e.g., horizontal, self-closing) 

value A standard or a numerical value that defines a quantity (e.g., 1,500 millimetres, five per cent) 

 

Table 5. Sample entity annotations 

Original Sentence Annotated Sentence 

The gradient of the passageway located in 
an outdoor space may not exceed five per 
cent. 

The <property>gradient</property> of the 
<object>passageway</object> located in an <object>outdoor 
space</object> may not exceed <value>five per cent</value>. 

There shall be a horizontal landing with a 
length of at least 1,500 millimetres at the 
lower and upper end of the ramp. 

There shall be a <quality>horizontal</quality> 
<object>landing</object> with a <property>length</property> 
of at least <value>1,500 millimetres</value> at the 
<property>lower and upper end</property> of the 
<object>ramp</object>. 

A fire door must be self-closing and self-
bolting. 

A <object>fire door</object> must be <quality>self-
closing</quality> and <quality>self-bolting</quality>. 
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Relation Annotation: Relations are semantic connections/associations among entities in the text 

[36]. Extraction of relations together with entities is a crucial process to transform information 

embedded in unstructured texts into structured data formats such as knowledge graphs. Altogether, 

we picked ten relation categories described in Table 6 after carefully analysing the possible relations 

in the regulatory text. Similar to our approach in defining entity labels, we mainly focused on the 

generalisability across different subdomains and coverage of semantic information when identifying 

these relation categories. The final category, ‘none’, is added considering the potential model 

requirements for identifying instances without relation between entity pairs. Comparatively, relation 

annotation requires a more complex process than the entity annotation process. As a result, a four-

step process: (1) mark entity text spans, (2) assign entity categories, (3) identify entity pairs which 

form relations, and (4) assign relation categories, was used. This task has proven more challenging 

than entity annotations, primarily due to its multiple intricate steps and the potential for error 

propagation. However, we instructed the annotators to adhere to the entire flow, allowing them the 

flexibility to highlight all relevant content simultaneously. Furthermore, this approach enabled them 

to review the provided annotations by examining the final entity-relation representation. We only 

applied the manual annotation process targeting the first nine entity categories without the ‘none’ 

category because once all the available relations are known, the remaining possible entity pairs form 

the no relations. A few annotated samples are shown in Table 6. 

Table 6. Relation categories 

Category Description 

selection A limit to the scope of an object/property based on another object, a quality or a user 

necessity A qualitative/subjective or existential necessity of an object/property (e.g., should, should 
have, shall be, etc.) 

part-of Being a part of an object/property 

not-part-of Not being a part of an object/property 

greater A value that should be greater than to 

greater-equal A value that should be greater than or equal to 

equal A value that should be equal to 

less-equal A value that should be less than or equal to 

less A value that should be less than to 

none No relation 
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Table 7. Sample relation annotations 

Original Sentence Entity Pairs Relation 

The gradient of the 
passageway located in 
an outdoor space may 
not exceed five per 
cent. 

The <property>gradient</property> of the 
<object>passageway</object> located in an outdoor space 
may not exceed five per cent. 

part-of 

The gradient of the <object>passageway</object> located in 
an <object>outdoor space</object> may not exceed five per 
cent. 

Part-of 

The <property>gradient</property> of the passageway 
located in an outdoor space may not exceed <value>five per 
cent</value>. 

less-equal 

Entity-relation Representation 

 

There shall be a 
horizontal landing with 
a length of at least 
1,500 millimetres at the 
lower and upper end of 
the ramp. 

There shall be a <quality>horizontal</quality> 
<object>landing</object> with a length of at least 1,500 
millimetres at the lower and upper end of the ramp. 

selection 

There shall be a horizontal <object>landing</object> with a 
<property>length</property> of at least 1,500 millimetres at 
the lower and upper end of the ramp. 

part-of 

There shall be a horizontal landing with a 
<property>length</property> of at least <value>1,500 
millimetres</value> at the lower and upper end of the ramp. 

greater-equal 

There shall be a horizontal <object>landing</object> with a 
length of at least 1,500 millimetres at the <property>lower 
and upper end</property> of the ramp. 

necessity 

There shall be a horizontal landing with a length of at least 
1,500 millimetres at the <property>lower and upper 
end</property> of the <object>ramp</object>. 

part-of 

Entity-relation Representation 
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3.3.1.3 CODE-ACCORD Datasets 

CODE-ACCORD consists of two main annotated datasets, including entities and relations, which are 

publicly available7. These annotations were applied to 862 self-contained sentences extracted from 

the building regulations of England and the English translation of the National Building Code of 

Finland (Section 3.3.1.1). Figure 18 illustrates the sequence length distribution of the selected 

sentences, revealing that a majority consist of fewer than 40 tokens.  

 

Figure 18. Sequence length distribution of annotated sentences in the CODE-ACCORD dataset 

The format of an entity-annotated CSV data file is summarised in Table 8. The entity annotations 

are available in the BIO (Beginning, Inside, Outside) format, which is considered the standard for 

information extraction tasks [38]. Since an entity can span over multiple words/tokens, ‘B’ marks the 

beginning word, and ‘I’ marks the other words which belong to the entity. All the remaining words 

that do not represent any entity will be marked with ‘O’. A sentence together with its BIO-tagged 

entities is shown below. 

 

Table 8. Format of entity data file 

Attribute Description 

example_id Unique ID assigned for each sentence/data sample 

content Original textual content of the sentence 

processed_content Tokenised (using NLTK’s word_tokenize package) textual content of the sentence 

label Entity labelled sequence in BIO format 

metadata Additional information of sentence (i.e. original approved document from which the 
sentence is extracted) 

 

7 CODE-ACCORD datasets are accessible through Hugging Face on https://huggingface.co/ACCORD-NLP 

https://huggingface.co/ACCORD-NLP
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The format of a relation-annotated CSV data file is summarised in Table 9. The following format was 

adopted to tag the entity pairs during relation data formatting in accordance with formats utilised in 

recent studies [17] [39]. The special tags <e1> and </e1> represent the start and end of the first 

entity that appeared in the sentence. Similarly, <e2> and </e2> represent the second entity. 

The <e1>gradient</e1> of the <e2>passageway</e2> located in an outdoor space may not exceed five 
per cent. 

 

Table 9. Format of relation data file 

Attribute Description 

example_id Unique ID assigned for each sentence/data sample 

content Original textual content of the sentence 

metadata Additional information of sentence (i.e. original approved document from which 
the sentence is extracted) 

tagged_sentence Sentence with tagged entity pair 

relation_type Category of the relation between the tagged entity pair 

 

More details about the final statistics of entity and relation data are described below. 

Entity Statistics: The CODE-ACCORD entities dataset has 4,297 entities distributed over four 

categories, as shown in Figure 19. As can be seen in Figure 20, which illustrates the distribution of 

the number of entities per sentence, most sentences consist of up to five entities. Figure 21 presents 

the sequence length distribution of text spans from each category. Accordingly, most entity spans 

are composed of one or two words/tokens. However, overall, there are more lengthy text spans 

under ‘quality’ than in the other categories. 

 

Figure 19. Distribution of entity categories 

 

Figure 20. Distribution of the number of entities per 
sentence 
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Figure 21. Sequence length distribution of annotated text spans as entities 

Relation Statistics: The CODE-ACCORD relations dataset has 3,329 human-annotated relations 

over nine categories. We automatically identified the unannotated entity pairs within sentences as 

unrelated entity pairs which belong to the tenth category of ‘none’. Out of 8,104 samples categorised 

as ‘none’, a random subset of 1,000 is included in the final dataset to ensure a balanced distribution 

with other relations. The breakdown of a total of 4,329 relations across ten categories is shown in 

Figure 22. Additionally, Figure 23 illustrates the distribution of the number of relations per sentence. 

As can be seen, most sentences contained two or three relations, although a minority had over ten 

relations. 

 

Figure 22. Distribution of relation categories 

 

Figure 23. Distribution of the number of 
relations per sentence 
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3.3.2 SNOWTEC: Synthetic Natural Language Oversampling with Transformer-based 

Information Extraction for Automated Compliance Checking 

Useful Links: 

• GitHub Repository 

• Hugging Face (Datasets, Models and Demo) 

• Python Package 

• Live Demo 
 

 

Building codes are primarily written in textual form, requiring extracting information from text to 

decode these data to support rule formalisation. This requirement encouraged the development of 

various Information Extraction (IE)/text formalisation techniques spanning manual, rule-based and 

machine-learning methodologies over the past decades. Recent research has shown promise in 

adopting deep learning; however, as far as we know, within Architecture, Engineering, and 

Construction (AEC), the transformers/language models’ potential remains untapped/unexplored for 

this task, yet they hold state-of-the-art performance across various Natural Language Processing 

(NLP) tasks. To address this gap, we proposed SNOWTEC, harnessing transformer-based 

architectures to extract information from regulatory sentences and transform it into standardised 

formats (i.e., knowledge graphs). We particularly focused on self-contained sentences within this 

development, which express rules while containing all the details themselves without any linguistical 

co-references that are unresolvable within the sentence, references to external sources or 

incomplete/ambiguous concepts. Such sentences form an essential component within Automated 

Compliance Checking (ACC), following their direct expression of rules that can be extracted 

straightforwardly.  

There are two main types of information found in the text: (1) entities (also known as named entities) 

and (2) relations, which are crucial for understanding the ideas expressed in natural language [36]. 

An entity is a concept or a specific piece of information that can be categorised or, simply, anything 

that can be identified using a proper name [36]. For instance, given the sentence ‘The gradient 

should not exceed five per cent’, ‘gradient’ and ‘five per cent’ represent its entities. A relation is a 

semantic connection/association among entities in the text [36]. For example, the sentence 

mentioned above illustrates a ‘less equal’ relation between the entities: ‘gradient’ and ‘five per cent’. 

Collectively, these entities and their relations capture the rule(s) expressed in natural language. 

Altogether, SNOWTEC included the development of a comprehensive pipeline capable of converting 

regulatory sentences into knowledge graphs of entities and relations, streamlining ACC. Concerning 

rule formalisation, unlike the many approaches which focus on converting regulatory text into rule 

languages like SPARQL [40] [41], our focus lies on an intermediate, yet descriptive, representation. 

Specifically, we leverage knowledge graphs to depict textual information in formats readable by both 

humans and machines, facilitating the easy expansion of knowledge. Also, the human-readable 

aspect enhances human-in-the-loop reviewing processes, ensuring the correctness and 

trustworthiness of the outputs. This approach fosters a collaborative environment, promoting 

confidence in the accuracy of the extracted information.  

The primary aim of SNOWTEC was to utilise the transformers’ potential for IE from regulatory 

sentences within the AEC sector, covering both entities and relations, to facilitate effective rule 

formalisation. However, besides the modelling approach, the quality and quantity of annotated data 

used to train the models significantly influence the final performance in predictive modelling. There 

is a noticeable scarcity of annotated data in the AEC sector specifically targeting IE from the 

regulatory text, which also can be seen as one of the main reasons for the limited adaptation of 

https://github.com/Accord-Project/accord-nlp
https://huggingface.co/ACCORD-NLP
https://pypi.org/project/accord-nlp/
https://huggingface.co/spaces/ACCORD-NLP/information-extractor
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recent NLP techniques. Data augmentation/oversampling has recently emerged as a popular 

solution in the NLP domain to combat data scarcity issues. However, there is a notable absence of 

data augmentation applications within the AEC sector focusing on textual data, and our efforts within 

SNOWTEC also target addressing this gap by proposing a novel data augmentation method. 

Moreover, our experimental studies compare the performance of several recent transformer models, 

including BERT [20], RoBERTa [24] and ALBERT [25], employing diverse learning techniques. Also, 

data from multiple domains such as accessibility, fire safety, structural integrity, energy efficiency 

and more are involved in evaluating the general applicability of the proposed methodology for IE.  

In summary, SNOWTEC’s main contributions are as follows. 

1. A novel information extraction pipeline utilising state-of-the-art transformer/language models 

to automatically extract information from the regulatory sentences in a domain-independent 

manner.  

2. A novel data oversampling/augmentation method designed to address data scarcity 

concerns that impede the predictive capabilities of language models. 

3. Formulation of the information extraction process from the regulatory text as a knowledge 

graph generation task, introducing a new direction to facilitate effective rule formalisation for 

ACC. 

More information about the design and development of the SNOWTEC pipeline is described in 

Section 3.3.2.1. Section 3.3.2.2 summarises the experimental studies conducted on SNOWTEC, 

including model performances and error analyses. Finally, Section 3.3.2.3 demonstrates the 

functionality of the entire pipeline with sample inputs and outputs. Also, a paper written based on the 

SNOWTEC approach, and its findings have been submitted to the Computers in Industry Journal, 

which is currently under review.  

3.3.2.1 SNOWTEC Information Extraction Pipeline 

SNOWTEC, the information extraction pipeline developed as a part of the ACCORD project, primarily 

aimed at producing a machine-processable output (i.e., an entity-relation graph) that encapsulates 

the information expressed in natural language, given a regulatory sentence as the input. This graph 

can be readily processed to automate compliance checks while supporting human-in-the-loop review 

processes. 

 

Figure 24. Overview of the SNOWTEC pipeline 
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Overall, the SNOWTEC pipeline comprises four integral components: (1) entity classifier, (2) entity 

pairer, (3) relation classifier and (4) graph builder. The overall pipeline, which includes input, output, 

and intermediate data samples, is illustrated in Figure 24. Entity and relation classifiers are machine 

learning models that utilise state-of-the-art language model/transformer-based architectures to 

extract entities and relations from textual data effectively. Also, the proposed relation classification 

approach is coupled with a novel data augmentation method to synthetically generate data to train 

language models effectively. These components play a pivotal role within this pipeline, and they are 

further described below. The entity pairer and graph builder act as connecting components that 

transform data to support the data flow within the pipeline. Specifically, the entity pairer translates 

the outputs generated by the entity classifier into the input format required by the relation classifier. 

Graph builder transforms the predictions of the relation classifier into the final knowledge graph.  

Entity Classifier: For entity classification, SNOWTEC involves a modified version of the general 

transformer architecture shown in Figure 16 with softmax layers for each output token, as illustrated 

in Figure 25. This architecture was commonly used within the NLP domain for sequence labelling 

following its remarkable results [20] [42]. We formulated the entity classification task as a sequence 

labelling problem to fit this architecture, as all the input tokens can be associated with a 

corresponding entity label. The same format (i.e. BIO - Beginning, Inside, Outside format) used with 

CODE-ACCORD entity formatting was involved here as the model’s data format (Section 393.3.1.3). 

The raw text was passed to the model as input, allowing it to predict the BIO label with entity category 

as the output. Since the model requires processing a single sentence per instance, we only use the 

[CLS] token for input formatting without including the [SEP] token. Each softmax layer consists of k 

number of neurons equal to the class/category count aimed at by the classifier (i.e., entity types). 

Each neuron adopts the softmax activation function following Equation (1), which returns 𝑃𝑖, the 

probability per class 𝑖. The input and output vectors are represented by 𝑧𝑖 and 𝑧𝑗. Once all 

probabilities are calculated, the class with the highest probability is identified as the final prediction. 

𝑃𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 
(1) 

 

Figure 25. Entity classification architecture 
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Relation Classifier: For relation extraction, SNOWTEC adapts the transformer-based architecture 

shown in Figure 26, which was proposed by recent studies in the NLP domain [17] [43]. Since the 

aim is to identify the semantic connection between an entity pair, we involved four additional special 

tokens: <e1>, </e1>, <e2> and </e2> to format the model's input. <e1> and </e1> denote the start 

and end of the first entity that appeared in the text sequence from the selected entity pair. Similarly, 

<e2> and </e2> denote the start and end of the second entity. Among the transformer's special 

tokens, we only use [CLS] with the relation classifier, as it requires processing a single sentence per 

instance, similar to the entity classifier. From the output layer, we take the embeddings 

corresponding to <e1> and <e2> as linguistical representations for the given entities. Then, their 

concatenation is considered the final output representation, which is fed into a softmax layer to 

predict the associated relationship. As described under the entity classifier above, a softmax layer 

calculates the probability per class (i.e., relation types) following Equation (1). We pick the relation 

type with the highest predicted probability as the final prediction. 

 

Figure 26. Relation classification architecture 

Data Augmentation: Data augmentation is the process that constructs synthetic data from an 

available dataset. Such a process proves advantageous in scenarios with limited or unbalanced 

data, mitigating the risk of overfitting in model training [44].  Even though data augmentation has 

been widely used with image data, its utilisation in NLP is still at an early stage [45]. One of the 

primary challenges in augmenting textual data lies in preserving the intricate linguistic structure 

available in original data with synthetic data. Back-translation and random synonym replacement are 

the two popularly used data augmentation techniques within NLP, considering their ability to 

generate data without losing underlying linguistics [46] [47]. However, back-translation cannot be 

used when the original data includes token-level labels, as back-translated samples could have a 

different number of tokens with no direct mapping with the original tokens. Similarly, random 
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synonym replacement is not applicable for regulatory data, as the majority of the entities in regulatory 

data appear as multi-word instances (e.g., `fire door', `cross-section area', etc.) and replacing some 

words with their synonym could result in text phrases which are unknown to the domain or no longer 

entities. After carefully analysing the limitations in available data augmentation techniques, we 

developed a novel method to synthetically generate relation-annotated data utilising domain-specific 

entities, which is demonstrated in Table 10. 

Table 10. Original sentence samples and their corresponding synthetic samples. Columns e1 and 

e2 represent the categories of each entity. A colour scheme representing categories is involved to 

highlight the entities in original and synthetic samples. 

Original Sample e1 e2 Relation Synthetic Samples 

Between the locking points 
for the mortice lock and 
surface-mounted rim lock, the 
<e1>distance</e1> should be 
<e2>400-600mm</e2>. 

property value equal Between the locking points for the 
mortice lock and surface-mounted rim 
lock, the <e1>cross-sectional area</e1> 
should be <e2>1m3</e2>. 

Between the locking points for the 
mortice lock and surface-mounted rim 
lock, the <e1>emission rate</e1> should 
be <e2>25W/m2</e2>. 

Between the locking points for the 
mortice lock and surface-mounted rim 
lock, the <e1>power input from 
controls</e1> should be <e2>50</e2>. 

<e1>Extinguishing 
routes</e1> of basement 
storeys must not be 
connected to fire and smoke-
proof <e2>exits</e2>. 

object object not-part-
of 

<e1>dwelling units</e1> of basement 
storeys must not be connected to fire and 
smoke-proof <e2>space heating or air-
conditioning system</e2>. 

<e1>room thermostat</e1> of basement 
storeys must not be connected to fire and 
smoke-proof <e2>tears</e2>. 

<e1>kitchens</e1> of basement storeys 
must not be connected to fire and smoke-
proof <e2>motor</e2>. 

 

Each relation-annotated instance includes an entity pair marked in a sentence or textual context with 

corresponding entity categories and an associated relation, as can be seen in Table 10 (columns 

Original Sample, e1, e2 and Relation). In such a setting, we can create more samples by replacing 

one or both entities with other entities of the same category. Table 10 contains three augmented 

samples per original sample to illustrate the idea further. On some occasions, the generated samples 

could hold false information. For instance, the first synthetic sample in Table 10 states an area (i.e., 

cross-sectional area) should be equal to a volume measure (i.e., 1𝑚3). However, it illustrates the 

text pattern and semantic relationship between two such entities within the given context accurately, 

allowing a model to learn associations among entities given a textual context. This fact is also 

reinforced by the results reported in Section 3.3.2.2. Also, this approach is widely applicable to any 

entity-relation dataset as there are no data-specific constraints. 
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3.3.2.2 Model Performance Overview 

As mentioned above, SNOWTEC consists of two machine learning models that extract entities and 

their semantic relations during the information extraction process. We primarily utilised the human-

annotated data available with the CODE-ACCORD datasets to train the models and evaluate their 

performance.  

Human-annotated Data: CODE-ACCORD datasets (Section 3.3.1) were used to evaluate the 

transformer-based models within SNOWTEC. As of now, to the best of our knowledge, CODE-

ACCORD stands as the sole publicly available dataset offering comprehensive entity and relation 

annotations specifically designed for building regulatory data. In addition to incorporating building 

regulations from two countries (i.e., England and Finland), this dataset also spans different 

subdomains, enabling the assessment of the general applicability of proposed machine learning 

models. More details about the CODE-ACCORD entity and relation datasets, including the used 

categories, their distribution and sample count, are described in Section 3.3.1.3. For both proposed 

classifiers, we considered 80% of the samples as training data and the remaining 20% as testing 

data during the evaluations. 

Considering the high imbalance nature within relation distribution, primarily characterised by 

underrepresented categories, we applied the augmentation technique outlined in Section 3.3.2.1 for 

the CODE-ACCORD’s relation-annotated data. 

Augmented Data: Data augmentation was only applied for the relation categories: ‘equal’, ‘greater’, 

‘greater-equal’, ‘less’, ‘less-equal’ and ‘not-part-of’, which exhibited a scarcity in representation. 

Importantly, the test set remained unaltered while we exclusively augmented the training data. For 

each sample in the training set, we generated 12 synthetic samples, considering the overall 

categorical distribution. Altogether, data augmentation increased the original training dataset of 

3,463 samples by 2,912 samples, as summarised in Table 11. Moreover, Figure 27 illustrates the 

distribution of the final training dataset, following the original distribution in Figure 28. The augmented 

dataset is also publicly available for utilisation by future research8. 

 

Figure 27. Distribution of the relation categories in 
original data 

 

Figure 28. Distribution of the relation categories 
in augmented data 

 

 

8 More information on how to access the CODE-ACCORD augmented datasets are available on 

https://github.com/Accord-Project/accord-nlp 

https://github.com/Accord-Project/accord-nlp
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Table 11. Statistics of original and augmented relation-annotated training data 

Category Original Data Synthetic Data Total 

equal 59 708 767 

greater 44 528 572 

greater-equal 86 800 886 

less 7 84 91 

less-equal 56 672 728 

necessity 822 - 822 

none 800 - 800 

not-part-of 10 120 130 

part-of 650 - 650 

selection 929 - 929 

Training data 3463 2912 6375 

 

Furthermore, we developed a text corpus by leveraging England’s approved document collection9 to 

enrich transformer models with domain-specific knowledge by utilising the language modelling 

approach described in Section 3.2.1.2. 

Regulatory Text Corpus: In developing the regulatory text corpus, we first converted all PDF files 

into TXT format using the PDFMiner library10. Subsequently, we conducted a series of data-cleaning 

procedures, including the rectification of formatting inconsistencies that occurred during the 

conversion process and the elimination of non-semantic elements such as pointers (e.g., G1, 1.2, 

a., etc.). Additionally, we filtered out section headings, incomplete text segments and those 

containing fewer than three words, exclusively retaining complete sentences and bullet-pointed text 

for the refined corpus. The final dataset comprised 14,336 text segments totalling 302,469 tokens. 

Figure 29 illustrates the sequence length distribution within this refined corpus. We split the data 

using an 80-20% split to have training and testing data. This text corpus is publicly available for 

utilisation by future research11.  

 

9 England's approved document collection is available on  

https://www.gov.uk/government/collections/approved-documents 
10 PDFMiner documentation is available on https://pypi.org/project/pdfminer/ 
11 The regulatory text corpus is available on https://github.com/Accord-Project/accord-nlp/tree/main/data/lm 

https://www.gov.uk/government/collections/approved-documents
https://pypi.org/project/pdfminer/
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm
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Figure 29. Sequence length distribution of text elements in the regulatory text corpus 

Our experiments utilised several pre-trained transformer/language models in conjunction with the 

proposed architectures (Figure 25 and Figure 26). The selected models have gained significant 

popularity in recent research due to their outstanding performance [48] [49]. 

Pre-trained Transformers: Altogether, we involved four transformer models: (1) BERT-Large (bert-

large-cased) [20], (2) RoBERTa-Large [24], (3) ALBERT-Large (albert-large-v2) [25], and (4) 

ELECTRA-Large (electra-large-discriminator) [50], pre-trained on English text for our experiments. 

These models were pre-trained in different settings, showcasing distinct characteristics. RoBERTa 

is a BERT variant that is trained on more data with longer training sentences. ALBERT is a lite 

version of BERT with parameter reduction to speed up the training process. ELECTRA follows a 

token discrimination-based pre-training process to facilitate more efficient training. All these pre-

trained transformers were obtained from HuggingFace's model repository [51] to conduct the 

experiments. Also, we used a common hyper-parameter setup for all model architectures, which is 

further described in Annex A.  

To evaluate the model's performance, we used precision (P), recall (R) and F1 scores, considering 

their coverage and common usage across various machine learning applications. 

Evaluation Metrics: Equations (2)-(4) were used for precision, recall and F1 score calculations. In 

these equations, TP, FP and FN refer to the true positive, false positive and false negative counts, 

respectively. Precision measures the accuracy of the predictions made by the model, while recall 

measures the portion of actual instances that the model correctly predicted. F1 is the weighted 

harmonic mean of precision and recall, combining their properties. For entity evaluation, we used 

the seqeval framework with strict mode on BIO format [52]. This compares the text span, category 

and BIO label to compute TP, FP and FN values and marks a span correct (TP) only if all these 

elements match the ground truth. For relation evaluation, TP, FP, and FN values are computed solely 

by comparing predicted and actual categories. A prediction is marked correct (TP) only if it matches 

the ground truth category perfectly. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹
 

(3) 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(4) 

Given the equal importance of multiple categories in both entity and relation classification, we 

employed the macro-averaging method to derive the final metrics. This involved initially computing 

each category's P, R and F1 values individually. Subsequently, we calculated their unweighted mean 

to obtain the final metrics, following Equation (5). In this equation, 𝑋 represents a metric (i.e., P, R 

or F1), 𝑛 represents the total number of categories, and 𝑋𝑖 represents a per-class metric value. 

𝑀𝑎𝑐𝑟𝑜 𝑋 =  
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 

(5) 

SNOWTEC implementations were conducted in Python, leveraging PyTorch [53] and Huggingface 

[51] libraries to build machine learning models12. The Graphviz library13 was used to visualise the 

graph outputs. All experiments were performed using an Intel Xeon Gold 6240 GPU. More details 

on entity and relation classifiers’ performance are available below. 

Entity Classifier’s Performance: For entity classification, we evaluated the performance of the 

proposed architecture (Figure 25) using four pre-trained transformers. The results obtained on 

validation and test datasets are summarised in Table 12. As the model is fine-tuned based on the 

results of validation data, which comprises a smaller subset (10% of the training data) compared to 

the test data, it is expected to yield more accurate predictions on the validation set. However, the 

notable discrepancy indicates the complexity of the task and suggests potential challenges arising 

from data scarcity. Among the transformer models, RoBERTa-Large showcased superior 

performance, exhibiting an average increase of 5% in validation F1 scores and 4% in test F1 scores 

compared to all other models. This also suggests that if the language model is pre-trained on a large 

corpus, it can be fine-tuned effectively for a downstream task. 

Table 12. Performance evaluation of the entity classifier across validation and test datasets using 

various transformer models. The best F1 score is marked in bold. 

Transformer 

Validation Test 

P R F1 P R F1 

BERT-Large 0.6182 0.5448 0.5686 0.3990 0.3511 0.3649 

ELECTRA-Large 0.6838 0.5486 0.5964 0.3630 0.2882 0.3059 

ALBERT-Large 0.6612 0.5825 0.6176 0.4172 0.3542 0.3791 

RoBERTa-Large 0.6485 0.6335 0.6400 0.3985 0.3902 0.3922 

 

 

12 SNOWTEC implementation is publicly available on https://github.com/Accord-Project/accord-nlp 
13 The documentation of Graphviz is available on https://graphviz.readthedocs.io/en/stable/ 

https://github.com/Accord-Project/accord-nlp
https://graphviz.readthedocs.io/en/stable/
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We further optimised our best-performing entity classifier, and our findings are summarised in Table 

13. We primarily focused on optimising the learning rate during the hyper-parameter tuning (Annex 

A). We experimented with 1𝑒−3, 1𝑒−4, and 1𝑒−6, following the initial setup of 1𝑒−5.The corresponding 

training and validation curves are visualised in Figure 30. Notably, 1𝑒−4 performed on par with 

1𝑒−5 but showcased better convergence. Overall, fine-tuning the learning rate resulted in a 

significant 8.9% increase in validation and a 4.8% increase in test F1 scores. 

Table 13. Impact on best-performed entity classifier’s (RoBERTa-Large) results by different 

optimisation techniques. The best F1 score is marked in bold. 

Optimisation Technique 

Validation Test 

P R F1 P R F1 

- 0.6485 0.6335 0.6400 0.3985 0.3902 0.3922 

Hyper-parameter tuning 0.7674 0.6956 0.7287 0.4827 0.4103 0.4399 

Language modelling 0.7655 0.7100 0.7351 0.4635 0.4279 0.4444 

 

  

Figure 30. Training and validation/evaluation learning curves of entity classifiers built using the 

RoBERTa-Large model on different learning rates. 

Furthermore, we applied language modelling to the RoBERTa-Large model using the regulatory text 

corpus and then fine-tuned it for entity classification. As shown in Table 13, this contributed to an 

additional improvement of 0.6% in validation and 0.4% in test F1 scores. These limited gains suggest 

that leveraging larger text corpora for language modelling could lead to more substantial 

enhancements, aligning with other recent studies. Nonetheless, our findings indicate that imparting 

domain knowledge to language models helps in enhancing entity classification performance. For an 

in-depth analysis, we delve into the performance of the best entity classifier in Annex B.  

Relation Classifier’s Performance: For relation classification, we evaluated the performance of the 

proposed architecture (Figure 26) using three pre-trained transformers. Considering the limited 

performance observed during entity classification experiments, the ELECTRA-Large model was 
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excluded from relation classification. The summary of results obtained from both validation and test 

datasets is presented in Table 14. Similar to the trends observed in the entity classifier results (Table 

12), the validation set reflects more accurate predictions compared to the test set. The standard 

practices of model fine-tuning based on validation outcomes and the smaller size of the validation 

set compared to the test set mainly result in such trends. However, unlike the entity classifier 

outcomes, no significant disparities exist between the validation and test results of the relation 

classifier. This suggests the model underwent a comprehensive learning process utilising a 

substantial dataset. 

Table 14. Performance evaluation of the relation classifier across validation and test datasets using 

various transformer models, with and without the integration of data augmentation. The best F1 score 

is marked in bold. The improvement in F1 score on the test data after applying data augmentation is 

indicated within brackets. 

Transformer 

Validation Test 

P R F1 P R F1 

BERT-Large 0.6129 0.4887 0.5144 0.5714 0.5029 0.5243 

ALBERT-Large 0.6332 0.5393 0.5590 0.5592 0.4978 0.5122 

RoBERTa-Large 0.6099 0.5895 0.5903 0.5577 0.5481 0.5498 

Data Augmentation 

BERT-Large 0.9215 0.9239 0.9207 0.8280 0.8161 0.8009 (+28%) 

ALBERT-Large 0.9098 0.9128 0.9109 0.8060 0.7511 0.7556 (+24%) 

RoBERTa-Large 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011 (+25%) 

Overall, Table 14 demonstrates a significant enhancement in the performance of the relation 

classifier achieved through data augmentation. On average, all models experienced a noteworthy 

26% increase in F1 scores after integrating augmented data. Similar to observations in the entity 

classifier scenario, among the transformer models, RoBERTa-Large exhibited superior performance. 

Initially, using the original dataset, RoBERTa-Large showcased an average increase of 5.4% in 

validation F1 scores and 3.4% in test F1 scores compared to other models. Even after incorporating 

augmented data, RoBERTa-Large maintained its lead, exhibiting an average increase of 2.9% in 

validation F1 scores and 2.3% in test F1 scores. These outcomes reinforce the notion that pre-

training a language model on a substantial corpus enables effective fine-tuning for downstream 

tasks, consistent with our observations in entity classifiers. Additionally, the performance of the 

BERT-Large model approached that of RoBERTa-Large following data augmentation. This 

highlights that an increased volume of data for a downstream task (i.e., relation classification) 

facilitates the model in learning task-specific details, minimising reliance on the original knowledge 

of the language model. 

We further optimised our best-performing relation classifier using the same techniques we used with 

the entity classifiers (i.e., hyper-parameter tuning and language modelling). Table 15 provides an 

overview of the obtained results. Under hyper-parameter tuning, we explored the model's 

performance by experimenting with three additional learning rates (i.e., 1𝑒−3, 1𝑒−4, and 1𝑒−6) 

subsequent to the initial setup of 1𝑒−5. However, upon reviewing the corresponding training and 

validation curves depicted in Figure 31, 1𝑒−5 turned out as the optimal learning rate. 
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Table 15. Impact on best-performed relation classifier’s (RoBERTa-Large) results by different 

optimisation techniques. The best F1 score is marked in bold. 

Optimisation Technique 

Validation Test 

P R F1 P R F1 

- 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011 

Hyper-parameter tuning 0.9448 0.9459 0.9450 0.7997 0.8352 0.8011 

Language modelling 0.9441 0.9461 0.9447 0.8507 0.7722 0.7922 

 

  

Figure 31. Training and validation/evaluation learning curves of relation classifiers built using the 

RoBERTa-Large model on different learning rates. 

In language modelling, we employed the same RoBERTa-Large model trained on the regulatory text 

corpus that was utilised for the entity classification experiments. Surprisingly, unlike the entity 

classification results, the relation classification outcomes exhibited a slight decrease following 

language modelling. This suggests a potential risk of confusion when applying language modelling 

using a limited domain-specific corpus alongside a rich training dataset for the downstream task. 

Overall, the application of optimisation techniques did not improve the relation classifier's 

performance. We also conducted an in-depth analysis of the best relation classifier, and our findings 

are discussed in Annex C.  

3.3.2.3 SNOWTEC Demonstration 

The final SNOWTEC pipeline (Figure 24)14 was built leveraging the best-performing entity and 

relation classifiers described above (i.e., RoBERTa-Large entity and relation classifiers). It 

automatically identifies entities and their relations within regulatory sentences to generate knowledge 

graphs that encapsulate the conveyed information, performing rule formalisation. Table 16 presents 

a selection of tested samples processed through the finalised pipeline, each accompanied by its 

 

14 SNOWTEC live demo is available on https://huggingface.co/spaces/ACCORD-NLP/information-extractor 

https://huggingface.co/spaces/ACCORD-NLP/information-extractor
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generated graph. As can be seen, these graphs adeptly encapsulate the essence of the original 

sentences in a structured manner. Also, these graphs serve as a machine-processable output, 

meticulously capturing and processing the linguistic complexities inherent in regulatory sentences. 

Ultimately, this transformation will facilitate effective Automated Compliance Checking (ACC) by 

rendering complex regulatory data into a simpler format. 

Table 16. Knowledge graphs generated by SNOWTEC for a set of sample sentences. In. and Out. 

denotes the input to and output from the pipeline. 

In. The gradient of the passageway should not 
exceed 5%. 

Any damage, such as tears, should be repaired 
before boarding. 

Out. 

  

In. Perimeter insulation should be continuous and 
have a minimum thickness of 25mm. 

In a mechanical system, there shall be a clearly 
labelled stop switch, which shall be located in an 
easily accessible place. 

Out. 
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3.3.3 RASE-LLM: RASE Automation Leveraging Large Language Models 

Useful Links: 

• Text to HTML Few Shots  
• Text to YAML Few Shots  
• Fine-tuned Model  
• RASE Automation Tool  

 

 

Building codes often exhibit a complex clausal structure, spanning multiple sentences, textual 

elements (e.g., bullet points), and even paragraphs. Such a design is particularly established 

because building codes are written in natural language targeting domain experts. Thus, achieving 

complete rule formalisation from textual sources has posed a challenge within the Architecture, 

Engineering, and Construction (AEC) domain. RASE, a widely recognised approach in AEC, 

addresses this challenge by capturing regulatory information from text blocks along with their 

underlying clausal structure and logic [2]. It mainly transforms regulatory/normative text into well-

defined logical rules while capturing the structure and semantics embedded in the text, facilitating 

Automated Compliance Checking (ACC) processes.  However, to the best of our knowledge, RASE 

has primarily been employed by domain experts so far as a markup language to manually annotate 

regulatory text, aiming to uncover the logic implied within text documents and resolve linguistic 

ambiguities to convert textual data into machine-processable formats [54]. To bridge this gap, we 

proposed <rase-method>, leveraging the capabilities of Large Language Models (LLMs) to automate 

the RASE annotation process. 

The RASE scheme is based on four operators: (1) R - requirement, (2) A - applicability, (3) S - 

selection and (4) E - exception. Requirements are the checks that need to be satisfied. They usually 

appear together with imperatives such as ‘must’ and ‘shall’. The applicability identifies to which or 

under which circumstance the check should be applied. Simply, it restricts the scope of the check. A 

check is associated with at least one applicability. Unlike applicability, selection defines more scope 

for a check. Exceptions describe when the check should be excluded. Overall, requirements and 

applicabilities are common in the regulatory text, while selections and exceptions are relatively rare. 

The RASE methodology for rule formalisation has three main steps. The first step is adding markup 

to text based on four RASE operators, aligning with the text semantics. This step mainly focuses on 

extracting the structure/arrangement of rules expressed in text, often resulting in nested tags.  

Secondly, each fine-granular annotation is paired with corresponding metadata to facilitate the 

generation of logical rules. This involves identifying the object, target/property, comparator, value, 

and unit associated with each annotated text phrase. The final step is to transform the operators into 

rules in Boolean logic, adhering to the pre-defined logical structure of RASE [2].  

It is pivotal to encapsulate all the RASE tags into a structured data format to automate the annotation 

process using predictive modelling. However, given that RASE was originally designed as a manual 

approach for domain experts, it lacks an established machine-processable format capable of 

capturing all annotated information. In response to this limitation, a novel YAML-based data format 

named Building Compliance Rule Language (BCRL) has been developed as part of the ACCORD 

project. More information on BCRL is available in the ACCORD deliverable 2.215. BCRL effectively 

captures the document structure, context, and comprehensive RASE annotations while following a 

 

15 ACCORD deliverable 2.2 in available on https://accordproject.eu/wp-

content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf  

https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py
https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://accordproject.eu/wp-content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf
https://accordproject.eu/wp-content/uploads/2024/02/ACCORD_D2.2_BCO_Ontology_and_Rules_Format.pdf
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simple yet informative schema that can facilitate automated rule formalisation. Also, the format's 

simplicity and consistent organisation, aligned with the original text's structure, emphasise its 

appropriateness for human verification, which is a crucial aspect of ACC. Given all these advantages, 

BCRL has been selected as the output data format for the RASE automation process, while the raw 

text is used as the input data.  

RASE-LLM included the development of an automated RASE annotation approach harnessing 

advanced natural language understanding and generation techniques offered by state-of-the-art 

Large Language Models (LLMs). This methodology primarily operates by taking raw text blocks (e.g., 

sections, chapters, or documents) as input and producing fully annotated RASE outputs in the BCRL 

format, solely leveraging the capabilities of LLMs without any human intervention. 

In summary, RASE-LLM’s main contributions are as follows. 

1. A novel automated RASE annotation approach utilising the predictive capabilities of the state-

of-the-art Large Language Models (LLMs) to streamline rule formalisation within AEC. 

2. A comprehensive evaluation procedure to assess the model’s prediction accuracy, focusing 

on both structural and semantical information crucial for rule extraction. 

3. A detailed experimental study to explore the LLMs' capacity to recognise intricate information 

in regulatory documents, including document structure and nested rules, involving different 

learning techniques. 

More information about the design and development of RASE-LLM are described in Section 3.3.3.1 

. Section 3.3.3.2 summarises the model performance overview and evaluation procedure. Finally in 

Section 3.3.3.3 demonstrates UI and functionality of the proposed approach with sample inputs and 

outputs. The interfaces presented in Section 3.3.3.3 are part of the RFT tool presentation in Section 

1 and 2 representin the automatic approach of RASE tagging and regulation interpretation. 

The contect of this section has been for consideration in the Nature Scientific Reports Journal.  

3.3.3.1 RASE- LLM Method 

This section outlines the methodologies used to automate the annotation of regulatory texts through 
the RASE method. By leveraging the capabilities of LLMs, this study aimed to transform textual 
descriptions of building regulations into structured YAML formats described in more details in [3], 
which facilitate ACC processes. 

The adopted methodology primarily operates by taking both the raw text blocks of the building 
regulations and their RASE-annotated YAML counterpart data as input along with prompt 
instructions to the LLMs to create similar RASE-annotated YAMLs from unseen examples of text 
regulations. Two types of prompt engineering methods have been implemented: fine-tuning and 
fewshot prompting. Few-shot learning is a technique whereby we prompt the LLM with several 
concrete examples of task performance, in our use case examples of RASE-annotated YAML files 
created from unstructured text regulations. Fine-tuning, on the other hand, is a technique whereby 
we take an off-the-shelf open-source or proprietary model, re-train it on a variety of concrete 
examples, and save the updated weights as a new model checkpoint. The fine-tuned model can be 
deployed to create new YAML files from text regulations. 

Experiment 1: Few-Shot Learning with GPT-4o (Text to YAML) 

The first experiment utilized the GPT-4o model, a variant of the third-generation language models 
developed by OpenAI. This model offers enhanced processing speed and efficiency due to its 
optimized architecture and employs a few-shot learning approach. This approach allows the model 
to generalize from a few examples to new inputs without extensive traditional training. For the setup, 
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we selected three examples from the dataset as few-shot prompts, providing the model with clear 
input-output pairs to establish the context for the task. The input consisted of text file content, and 
the output was the corresponding YAML file. The model was then tested on new, unseen text files, 
converting these texts into YAML format using the context learned from the few-shot examples. The 
evaluation criteria focused on the model's ability to recognize and convert intricate information in 
regulatory documents, including document structure and nested rules, ensuring both structural and 
semantic accuracy in the YAML conversion.  

#Example 1  
Input: Text file1  
Output: YAML file1  

#Example 2  
Input: Text file2  
Output: YAML file2  

#Example 3  
Input: Text file3  
Output: YAML file3  

The following are snapshots of both input and output samples:  
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Experiment 2: Few-Shot Learning with GPT-4o (Text to HTML)  

The second experiment utilized the GPT-4o model, an advanced variant of OpenAI's third-generation 
language models. This model boasts improved processing speed and efficiency thanks to its 
optimized architecture and employs a few-shot learning approach. This approach enables the model 
to generalize from a few examples to new inputs without requiring extensive traditional training. For 
the setup, we selected three examples from the dataset as few-shot prompts, providing the model 
with clear input-output pairs to establish the task's context. The input consisted of text file content, 
and the output was the corresponding HTML file. The model was then tested on new, unseen text 
files, converting these texts into HTML format based on the context learned from the few-shot 
examples. The evaluation criteria focused on the model's ability to recognize and convert intricate 
information in regulatory documents, including document structure and nested rules, ensuring both 
structural and semantic accuracy in the HTML conversion.  

#Example 1  
Input: Text file1  
Output: HTML file1  

#Example 2  
Input: Text file2  
Output: HTML file2  

#Example 3  
Input: Text file3  
Output: HTML file3  
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Experiment 3: Fine-Tuning with GPT-4o 

The second experiment focused on fine-tuning the GPT-4o model, which supports customization 
for specific tasks by training on a targeted dataset. For data preparation, we used 25 paired text 
and YAML files derived from building regulations, selecting 15 pairs for training, 5 pairs for 

validation, and reserving 5 pairs for testing. Two JSONL files, training.jsonl and 

validation.jsonl, were created for the fine-tuning process, with each entry formatted to include 

the system's role, user input (text file content), and assistant output (YAML file content). 

The fine-tuning process involved initiating a fine-tuning job on OpenAI’s server using the prepared 
JSONL files, training the model on the training.jsonl file. The fine-tuned model was then tested 

on the five reserved text-YAML file pairs to evaluate its performance. Detailed results and analysis 
of this testing phase are discussed in the "Model Evaluation" section. 
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Incremental Prediction Strategy  

All experiments implemented an incremental prediction strategy to overcome the token generation 
limits of GPT models, which are restricted to 4096 tokens per generation. This strategy was essential 
for processing lengthy regulatory documents that exceeded the model's output capacity. The 
incremental prediction method is described as follows:  

1. Initial Input Processing:  
o The model begins by processing the initial segment of the regulatory text. 
This segment is within the token limit, ensuring that the model can generate an 
output without truncation.  

2. Partial YAML Generation:  
o The model generates a portion of the YAML output based on the initial 
input. This partial YAML represents a segment of the complete conversion that 
fits within the token limits.  

3. Context Reinsertion:  
o The generated YAML segment is then reinserted into the model's context. 
This updated context includes both the initial regulatory text segment and the 
corresponding generated YAML.  

4. Subsequent Input Segmentation:  
o The following segment of the regulatory text is appended to the updated 
context. Care is taken to ensure that the combined context (previous context plus 
the next segment) stays within the token limit.  

5. Iterative Generation:  



 

D2.3 Rule Formalisation Tool and AI V1.2 

 

GA No: 101056973                                                                                                                   62 

o The model is prompted again to continue the YAML generation from 
where it left off. This iterative process involves repeatedly generating new 
segments of the YAML output, reinserting them into the context, and appending 
subsequent text segments until the entire document is processed.  

6. Handling Long Documents:  
o For particularly lengthy documents, this incremental approach ensures 
that the entire text is eventually converted into YAML format, with each segment 
processed and reintegrated methodically. This avoids token overflow issues and 
ensures continuity in the generated output.  

7. Evaluation of Continuity and Accuracy:  
o At each step, the generated YAML segments are evaluated for continuity 
and accuracy to ensure that the incremental predictions align seamlessly with the 
previously generated segments. This evaluation helps maintain the structural and 
semantic integrity of the output.  

By utilizing this incremental prediction strategy, the experiments effectively managed the token 
generation limits of GPT models, enabling the successful conversion of extensive regulatory texts 
into YAML format without loss of information or context. This approach was particularly crucial for 
ensuring the fidelity of rule extraction and the overall reliability of the automated compliance checking 
processes.
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3.3.3.2 Model Performance Overview 

In this section, we describe the evaluation metrics used to assess the performance of our models in 
generating YAML files from regulatory texts. The evaluation concentrates on two main aspects: 
structural similarity and text similarity. These metrics provide a thorough assessment of both the 
structure and content of the generated YAML files. 
 

Structure Evaluation (Graph Similarity):  

The structural accuracy of the generated YAML files is assessed using graph similarity metrics. Each 
YAML file is converted into a graph representation where nodes represent keys and values, and 
edges depict the hierarchical relationships between these elements. To compute the similarity 
between the generated and reference graphs, we utilize the SimGNN model, a neural network-based 
approach.The process begins by converting both the generated and reference YAML files into graph 
structures. Initial node embeddings are computed using Graph Convolutional Networks (GCNs), 
which aggregate information from neighbouring nodes to create a detailed representation of the 
graph's structure. These node embeddings are then aggregated into a single graph-level embedding 
via a global context-aware attention mechanism, which calculates a global context vector for the 
graph and uses it to weigh the importance of each node's embedding. 

Interaction scores between graph-level embeddings are computed using a Neural Tensor Network 
(NTN). Additionally, pairwise similarity scores between nodes of the two graphs are calculated, and 
histogram features are extracted from these scores. Finally, graph-level interaction scores and 
histogram features are combined using fully connected layers to produce a final similarity score.  

To quantify the structural differences between the generated and reference graphs, we compute the 
Graph Edit Distance (GED), which measures the minimum number of operations (node/edge 
insertions, deletions, and relabelling) required to transform one graph into the other. The GED is 
normalized and transformed into a similarity score ranging from 0 to 1 using an exponential function.  

(𝜆(𝑥) =  𝑒{−𝑥}), 𝑤ℎ𝑒𝑟𝑒 (𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐺𝐸𝐷. 

Content Evaluation (Text Similarity):  

The text similarity between the contents of the generated and reference YAML files is evaluated 
using accuracy and adjusted accuracy metrics. The accuracy metric measures the overlap of words 
between the two texts, while the adjusted accuracy accounts for differences in chunk sizes to 
penalize discrepancies in text segmentation. First, the number of overlapping words between the 
generated and reference texts is calculated to determine the common words. Then, the total number 
of unique words in both texts combined is computed. The basic accuracy is calculated as the ratio 

of common words to total unique words, defined as (accuracy(𝑥, 𝑦) =
common(𝑥,𝑦)

total(𝑥,𝑦)
)  

To account for text segmentation differences, we determine the number of chunks in both the 

generated ((𝑐𝑥))𝑎𝑛𝑑𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒((𝑐𝑦)) texts. The chunk penalty is then computed using the 

logarithmic difference in chunk counts, normalized by the total number of chunks in the larger text 

((𝑡)). This is defined as (chunk penalty(𝑐𝑥, 𝑐𝑦, 𝑡) =
log2(chunk difference(𝑐𝑥,𝑐𝑦)+1)

log2(𝑡+1)
) 

Finally, the adjusted accuracy is calculated to incorporate the chunk penalty, reducing the impact of 
segmentation differences. The formula for adjusted accuracy is  

(adjusted accuracy(𝑥, 𝑦, 𝑐𝑥 , 𝑐𝑦, 𝑡, 𝑤) = accuracy(𝑥, 𝑦) × (1 − 𝑤 × chunk penalty(𝑐𝑥, 𝑐𝑦, 𝑡))), 
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Where (𝑤) is the chunk penalty weight. 

 
Results and Discussion 
This section presents and analyzes the results from the three experiments conducted to assess the 
performance of the GPT-4o model in generating YAML files from regulatory text. The evaluation 
focuses on two main metrics: structural similarity and text similarity. 
 
In the first experiment, we employed a few-shot learning approach with GPT-4o, supplying the 
model with three sample pairs as prompts. The model was then tasked with predicting YAML 
structures for 22 test samples. The structural similarity scores for these predictions are detailed in 
the following table, with an average structural similarity score of 0.69, indicating a moderate level of 
structural accuracy.  
 

0.75  0.64  0.63  0.69  0.77  0.79  
0.7  0.75  0.67  0.76  0.79  0.7  
0.64  0.63  0.68  0.76  0.74  0.64  
0.61  0.6  0.57  0.65      

The text similarity scores, also shown in the table, averaged 0.76. This higher average compared to 
the structural similarity score suggests that while the model was relatively effective at capturing the 
content, it had more difficulty maintaining the correct hierarchical structure.  

0.81  0.79  0.77  0.75  0.74  0.74  
0.85  0.7  0.75  0.84  0.73  0.79  
0.69  0.73  0.72  0.75  0.83  0.68  
0.8  0.69  0.79  0.78      

The second experiment focused on fine-tuning the GPT-4o model using a dataset of 25 paired text 
and YAML files, divided into 15 pairs for training, 5 pairs for validation, and 5 pairs for testing. The 
structural similarity results for this experiment are detailed in the following table, with an average 
score of 0.74. This improvement over the few-shot learning approach suggests that fine-tuning 
enables the model to more effectively learn and replicate the hierarchical structures in the YAML 
files.  

0.78  0.67  0.78  0.70  0.78  

The text similarity scores for this experiment, also shown in the following table, averaged 0.81. The 
higher scores in both structural and text similarity metrics compared to the few-shot learning 
approach highlight the effectiveness of fine-tuning in enhancing model performance.  

0.82  0.78  0.80  0.84  0.81  
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 3.3.3.3 Rase Automation Tool 

3.3.3.1.1 Introduction  

The main target of this tool is to streamline the process of converting regulatory text files into YAML 
format using an AI model. The web application integrates several components to provide real-time, 
accurate conversion of regulatory texts into YAML files. The architecture of the application (Figure 
32) is designed to handle user inputs, process them using an AI model, and provide the results back 
to the user efficiently. The system includes a web application, a REST API, an AI model, a database, 
and a Real-Time Notification Provider (RTNP). 

 

Figure 32. RASE automation tool architecture. 
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 3.3.3.1.3 Tool Components 

1. User Interface (Web Application) 

• Purpose: To allow users to interact with the tool, upload text files, and receive YAML 
outputs.  
• Functionality: Users upload their text files through the web interface. The web 
application sends these files to the REST API for processing and displays the resulting 
YAML files to the user.  

2. REST API 

• Purpose: To serve as an intermediary between the web application and the AI model.  
• Functionality: The REST API receives text files from the web application, forwards 
them to the AI model for processing, and returns the generated YAML files back to the 
web application. It ensures smooth communication and data transfer within the system.  

3. AI Model 

• Purpose: To convert the regulatory text files into YAML format using the RASE 
method.  
• Functionality: The AI model, fine-tuned on a dataset of regulatory texts and YAML 
files, processes the input text files and generates structured YAML outputs. The model 
handles the complexities of the regulatory language and maintains the hierarchical 
structure required for effective compliance checking.  

4. Database 

• Purpose: To store user data, input text files, and generated YAML files.  
• Functionality: The database ensures that all data is securely stored and easily 
retrievable. It supports the web application by providing persistent storage for ongoing 
and past conversions.  

5. Real-Time Notification Provider (RTNP) 

• Purpose: To notify users about the status of their file processing in real time.  
• Functionality: The RTNP component sends real-time notifications to users about the 
progress and completion of their text file conversion. This ensures that users are kept 
informed throughout the process without having to manually check the status.  

3.3.3.1.4 Process Flow  

1. File Upload:  

   - The user uploads a text file through the web application.  

2. Data Transfer:  

   - The web application sends the uploaded file to the REST API.  

3. AI Processing:  
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 - The REST API forwards the file to the AI model, which processes the file and generates the 
corresponding YAML output.  

4. Storage and Retrieval:  

   - The generated YAML file is stored in the database, and the REST API retrieves it for the web 
application.  

5. User Notification:  

   - The RTNP notifies the user about the completion of the conversion process, and the web 
application displays the YAML file to the user.  

 3.3.3.1.5 Conclusion  

This tool leverages the power of AI to automate the conversion of regulatory text files into YAML 
format, significantly enhancing efficiency and accuracy in compliance-related tasks. The well-
structured architecture ensures seamless operation and real-time user updates, making it a robust 
solution for automated compliance checking. The screenshots of the UI for the RASE-LLM Tool are 
presented in ANNEX D.  

3.3.4 Resource Index 

This section serves as a comprehensive index of all open-source resources, including datasets, 

models and workflows, developed by the task for Artificial Intelligence for Natural Language 

Processing of Building Codes within the ACCORD project. 

3.3.4.1 Datasets 

Dataset Description Section 
Reference 

CODE-ACCORD 
Entities 

CODE-ACCORD entity-annotated data, considering four entity 
categories: (1) object, (2) property, (3) quality and (4) value 

Section 3.3.1.3 

CODE-ACCORD 
Relations 

CODE-ACCORD relation-annotated data, considering ten 
relation categories: (1) selection, (2) necessity, (3) part-of, (4) 
not-part-of, (5) greater, (6) greater-equal, (7) equal, (8) less-
equal, (9) less and (10) none 

Section 3.3.1.3 

Augmented CODE-
ACCORD Relations 

Oversampled CODE-ACCORD relations dataset with a more 
balanced category distribution 

Section 3.3.2.2 

 

Regulatory Text 
Corpus 

Raw text corpus developed utilising England's approved 
document collection 

Section 3.3.2.2 

 

3.3.4.2 Pre-trained Models 

Model Description Section 
Reference 

https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Entities
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Entities
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://huggingface.co/datasets/ACCORD-NLP/CODE-ACCORD-Relations
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm
https://github.com/Accord-Project/accord-nlp/tree/main/data/lm
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ACCORD-NLP/ 
ner-roberta-large 

RoBERTa large model fine-
tuned for sequence 
labelling/entity classification 
using the CODE-ACCORD 
Entities dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
ner-bert-large 

BERT large (cased) model 
fine-tuned for sequence 
labelling/entity classification 
using the CODE-ACCORD 
Entities dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
ner-albert-large 

ALBERT large model fine-
tuned for sequence 
labelling/entity classification 
using the CODE-ACCORD 
Entities dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
re-roberta-large 

RoBERTa large model fine-
tuned for relation 
classification using the 
CODE-ACCORD Relations 
dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
re-bert-large 

BERT large model fine-tuned 
for relation classification 
using the CODE-ACCORD 
Relations dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
re-albert-large 

ALBERT large model fine-
tuned for relation 
classification using the 
CODE-ACCORD Relations 
dataset 

Section 
3.3.2.1 and 
3.3.2.2 

ACCORD-NLP/ 
roberta-large-lm 

RoBERTa large model pre-
trained on the Regulatory 
Text Corpus using the 
Masked Language Modelling 
(MLM) objective 

Section 
3.2.1.2 and 
3.3.2.2 

ACCORD-NLP/ 
ner-roberta-large-lm 

RoBERTa large model fine-
tuned for sequence 
labelling/entity classification 
using the CODE-ACCORD 
Entities dataset, following 
language modelling using the 
Regulatory Text Corpus 

Section 
3.3.2.1 and 
3.3.2.2 

https://github.com/Accord-
Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py  
  
https://github.com/Accord-
Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py  
  

Few shots for both:  
1. Text to HTML  
2. Text to YAML  

Section 
3.3.3.1  

https://github.com/Accord-
Project/RaseLLM/blob/main/fine_tuning_use_model.py  
  

Fine-tuning for Text to YAML  Section 
3.3.3.1  

https://huggingface.co/ACCORD-NLP/ner-roberta-large
https://huggingface.co/ACCORD-NLP/ner-roberta-large
https://huggingface.co/ACCORD-NLP/ner-bert-large
https://huggingface.co/ACCORD-NLP/ner-bert-large
https://huggingface.co/ACCORD-NLP/ner-albert-large
https://huggingface.co/ACCORD-NLP/ner-albert-large
https://huggingface.co/ACCORD-NLP/re-roberta-large
https://huggingface.co/ACCORD-NLP/re-roberta-large
https://huggingface.co/ACCORD-NLP/re-bert-large
https://huggingface.co/ACCORD-NLP/re-bert-large
https://huggingface.co/ACCORD-NLP/re-albert-large
https://huggingface.co/ACCORD-NLP/re-albert-large
https://huggingface.co/ACCORD-NLP/roberta-large-lm
https://huggingface.co/ACCORD-NLP/roberta-large-lm
https://huggingface.co/ACCORD-NLP/ner-roberta-large-lm
https://huggingface.co/ACCORD-NLP/ner-roberta-large-lm
https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shots_gpt_text_to_html.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/few_shot_text_yaml_rase.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py
https://github.com/Accord-Project/RaseLLM/blob/main/fine_tuning_use_model.py
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https://github.com/Accord-
Project/RaseLLM/tree/main/RASE_Automation_Tool  
  

RASE Automation Tool (Web 
Application)  

Section 
3.3.3.3  

ACCORD-NLP/ 
re-roberta-large-lm 

RoBERTa large model fine-
tuned for relation 
classification using the 
CODE-ACCORD Relations 
dataset, following language 
modelling using the 
Regulatory Text Corpus 

Section 
3.3.2.1 and 
3.3.2.2 

3.3.4.3 Workflows 

Workflow Description Section 
Reference 

SNOWTEC Information extraction pipeline to convert a self-contained 
regulatory sentence into a knowledge graph(s) of entities and 
relations 

Section 0 

 

3.3.5 Future Improvements 

In the future we aim to automate the interpretation of images and tables found in the regulations and 

other documents. Also, we aim to enhance the NLP models with the capability to interpret and 

convert into structure graph format not only single self-contained sentences but also paragraphs of 

text.  

  

https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://github.com/Accord-Project/RaseLLM/tree/main/RASE_Automation_Tool
https://huggingface.co/ACCORD-NLP/re-roberta-large-lm
https://huggingface.co/ACCORD-NLP/re-roberta-large-lm
https://huggingface.co/spaces/ACCORD-NLP/information-extractor
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4. Conclusions 

This deliverable has documented the outcomes of Tasks 2.4 “Artificial Intelligence for Natural 

Language Processing of Building Codes” and 2.5 “Design and Implementation of Rule Formalisation 

Tool” of the ACCORD project. The specified objectives have been successfully realized through the 

accomplishment of the following goals: 

• Creation of a web tool provided with the necessary user interfaces to allow experts in 

regulations and construction codes to formalize regulatory documents in PDF format in 

graphs as instances of AEC3PO ontology. 

• Creation of a tool that leverages the power of AI to automate the conversion of regulatory 

text files into YAML format, significantly improving efficiency and accuracy in tasks related to 

regulatory compliance. 

The AEC3PO is a component of the Compliance and Permitting Semantic Framework developed in 

the ACCORD project reported in Deliverable 2.2, together with the rule formalisation methodology 

developed in Task 2.3 and BCRL, a domain specific rule language. All these components have been 

successfully implemented in the rule formalisation tool, providing a way for regulatory experts to 

generate versions of regulations in a machine-processable format. 

ACCORD is a pioneer in deploying LLM models for interpreting and structuring textual regulatory 

content and the progress of AI based rule interpretation has gone beyond the initial aim of the project 

which was limited to only identify important entities and relationships in regulatory text.  
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Annex A. SNOWTEC: Model Hyper-parameters  

We used a common hyper-parameter setup summarised in Table 17 to generate comparable results 

while maintaining consistency among different entity and relation classification architectures. We 

also believe these parameters will provide a basis for future experiments. However, depending on 

the training data availability, we set the evaluation steps to eight for the entity classifier and 16 for 

the relation classifier, allowing five and 15 evaluations per epoch, respectively. These evaluations 

were conducted on a validation split of 10% of training data while using the remaining 90% for 

training. 

Table 17. Hyper-parameter specifications 

Parameter Value 

Learning rate 1𝑒−5 

Batch size 16 

Number of epochs 5 

Early stopping patience 10 

Maximum sequence length 128 

Optimiser Adam optimiser  

 

Our experiments involved two model optimisation techniques: (1) hyper-parameter tuning and (2) 

language modelling. During hyper-parameter tuning, we particularly focused on optimising the 

model's learning rate. Our initial experiments revealed that adjusting this parameter yielded a more 

noticeable impact on the final results compared to others. More details about hyper-parameter tuning 

are discussed together with each classifier’s results in Section 3.3.2.2. For language modelling, we 

used the maximum sequence length of 128 following the sequence length distribution in Figure 29. 

We set the batch size to 16 and the learning rate to 3𝑒−5 with Adam optimiser, following our initial 

experiments. We allowed the model to train on 25 epochs with an early stopping patience of 10, 

considering the sensitivity of this task. 

Annex B. SNOWTEC: Error Analysis of Entity Classifier 

The best-performed entity classifier’s (i.e. RoBERTa-Large with language modelling) results were 

further analysed to identify the causes of its performance limitations. Our analysis revealed two major 

factors: (1) unique attributes of entity categories and (2) contextual complexities that directly affect 

the model performance, as elaborated below. 

Impact by unique attributes of entity categories: In entity classification, we aim to identify four 

categories (i.e. object, property, quality and value) defined in the CODE-ACCORD dataset (Section 

3.3.1.2), which hold their unique characteristics. For instance, objects and values were mostly 

formed by one or two tokens/words. Additionally, a high proportion of values have numbers mostly 

coupled with units. In contrast, properties and qualities have a composition of short and long text 

sequences. Overall, qualities have more lengthy text spans than all other categories. We showcase 
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a few randomly selected entities from each category in Table 18 to further emphasise their distinctive 

attributes. Table 19 presents the outcomes of our analysis regarding the model's predictive 

performance for each entity category. Objects and values, the entity categories characterised by 

more definitive structures with shorter sequences, demonstrated comparatively higher F1 scores, as 

evident from the results. Since values have the fewest annotated samples, these results suggest 

that the integrity of the entity structure has more influence on the model's learning than the sample 

count. This fact is further confirmed by the results obtained under quality. Even though quality has 

more annotated samples (× 6 than value samples), it resulted in the lowest F1  score due to its 

complex structure. Overall, our findings suggest that the inherent nature or structure of an entity 

category significantly influences the learning process of a transformer-based entity classifier, often 

surpassing the impact of the sample count within the training data. 

Table 18. Entity categories with a few samples 

object property quality value 

building height mechanical one 

doors width insulated 900mm 

parking spaces U-values wheelchair-accessible 500 millimetres 

windows target primary energy rate for entering a dwelling 0.7 metres 

ventilation systems floor area insulated at ceiling level 0.15m/s 

 

Table 19. Results of the best-performed entity classifier (RoBERTa-Large) on validation and test 

datasets across different entity categories 

Category 

Validation Test 

Support P R F1 Support P R F1 

object 146 0.7955 0.7192 0.7554 317 0.5212 0.5047 0.5128 

property 48 0.6154 0.6667 0.6400 98 0.4750 0.3878 0.4270 

quality 139 0.7281 0.5971 0.6561 317 0.3805 0.3817 0.3811 

value 28 0.9231 0.8571 0.8889 48 0.4773 0.4375 0.4565 

Macro Average 361 0.7655 0.7100 0.7351 780 0.4635 0.4279 0.4444 

 

Impact by the contextual complexities: In natural language, the organisational structure of textual 

elements within a context significantly influences entity identification. To measure contextual 

complexity in our experiments, we adopted the entity count within a sentence, where a higher count 

denotes a more detailed and intricate context. Table 20 provides a summary of the entity classifier's 

performance variations based on contextual complexities. As can be seen, the model demonstrates 

heightened accuracy in identifying entities within simpler contexts or those with fewer entities. 

Conversely, sentences with a high number of entities, often indicating longer and more complex 
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structures, yield less accurate results. Overall, the model may require exposure to more data to 

effectively grasp intricate contextual structures and improve the prediction performance of complex 

sentences. 

Table 20. Results of the best-performed entity classifier (RoBERTa-Large) on test datasets 

depending on the entity count per sentence. 

Entity Count Category Support P R F1 

≤ 3 object 70 0.6494 0.7143 0.6803 

property 17 0.6429 0.5294 0.5806 

quality 87 0.4674 0.4943 0.4804 

value 7 0.5000 0.4286 0.4615 

Macro Average 181 0.5649 0.5416 0.5507 

> 3 𝑎𝑛𝑑 ≤ 5 object 100 0.5500 0.5500 0.5500 

property 44 0.5000 0.4091 0.4500 

quality 103 0.3846 0.4369 0.4091 

value 19 0.5556 0.5263 0.5405 

Macro Average 266 0.4975 0.4806 0.4874 

> 5 object 147 0.4231 0.3741 0.3971 

property 37 0.3667 0.2973 0.2973 

quality 127 0.3028 0.2598 0.2797 

value 22 0.4000 0.3636 0.3810 

Macro Average 333 0.3731 0.3237 0.3465 

 

Annex C: SNOWTEC: Error Analysis of Relation Classifier 

The best-performed relation classifier’s (i.e. RoBERTa-Large with data augmentation) results were 

further analysed to identify the factors that hinder its performance. The overall assessment displayed 

consistent performance across all relation categories, with a validation F1 score exceeding 80%, as 

depicted in Table 21. Although there were slight declines in the greater-equal and less-equal 

categories in the test set, given their association with a relatively small sample count, these drops 

can be deemed negligible. Altogether, these findings suggest that the relation category has no 

notable impact on the model's final performance. 

Table 21. Results of the best-performed relation classifier (RoBERTa-Large) on validation and test 

datasets across different relation categories 
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Category 

Validation Test 

Support P R F1 Support P R F1 

equal 77 0.9625 1.0000 0.9809 15 0.7143 1.0000 0.8333 

greater 57 1.0000 1.0000 1.0000 11 0.8182 0.8182 0.8182 

greater-equal 89 0.9889 1.0000 0.9944 21 0.7273 0.7619 0.7442 

less 9 1.0000 1.0000 1.0000 2 1.0000 1.0000 1.0000 

less-equal 73 0.9865 1.0000 0.9932 14 0.6842 0.9286 0.7879 

necessity 82 0.8902 0.8902 0.8902 206 0.9167 0.8544 0.8844 

none 80 0.8592 0.7625 0.8079 200 0.8289 0.7750 0.8010 

not-part-of 13 1.0000 1.0000 1.0000 2 0.6667 1.0000 0.8000 

part-of 65 0.8657 0.8923 0.8788 162 0.7910 0.8642 0.8260 

selection 93 0.8947 0.9140 0.9043 233 0.8498 0.8498 0.8498 

Macro Average 638 0.9448 0.9459 0.9450 866 0.7997 0.8352 0.8011 

 

Secondly, we explored the misclassifications to identify potential confusion between relation 

categories. This in-depth analysis revealed that complex textual structures influence the model's 

performance, leading to misclassification. Details of these findings are outlined below. 

 

Figure 33. Confusion matrix of the best-performed relation classifier (RoBERTa-Large) on the test 

dataset 

Impact by complex textual structures: The confusion matrix of the best-performed relation 

classifier on the test dataset is illustrated in Figure 33. This matrix exhibits clear patterns, confirming 
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the model's overall strong performance. Diagonal dominance signifies a majority of accurate 

predictions, accompanied by low off-diagonal values, which indicate minimal misclassification. 

However, we further investigated the misclassifications (particularly, the off-diagonal values above 

10) to understand the factors contributing to the model's confusion. Our analysis pinpointed that most 

of these instances of confusion arose from complexities within the textual structure. To explain this 

finding, we summarise the frequently identified textual complexities in Table 22 together with relevant 

data samples. 

Table 22. Frequently misclassified relations with identified causes and samples 

True 
Label 

Predicted 
Label 

Sample Reason 

necessity none Any <e1>walls</e1>, doors and windows should be insulated 
and <e2>draught-proofed</e2> to at least the same extent as 
in the existing building. 

multiple 
necessities 

Ground arrays including <e1>header pipes</e1> and 
manifolds should be <e2>flushed as one system to remove 
all debris and purged to remove all air</e2>. 

none part-of The <e1>roof structures</e1> and <e2>joints</e2> must be 
properly inclined and sealed for water drainage. 

conjoined 
elements 

The natural or mechanical <e1>ventilation system</e1> of a 
building shall be strong and its <e2>air-tightness</e2> shall 
be at least class B. 

coreferences 

none selection There shall be <e1>adequate means</e1> of ventilation 
<e2>provided for people in the building</e2>. 

hierarchical 
relationships 

The air extract rate should be 20 litres per second per 
<e1>machine</e1> <e2>during use</e2>. 

selection none In an existing building, for the principal or <e1>main 
staff</e1> entrance or <e2>entrances</e2> to be accessible, 
an alternative accessible entrance should be provided. 

multiple 
selections 

A building must be provided with a fire wall if <e1>it</e1> is 
situated adjacent to a neighbouring building or <e2>so close 
to a neighbouring building that the spread of fire is 
evident</e2>. 

selection part-of <e1>Requirements</e1> for <e2>accessibility</e2> should 
be balanced against preserving historic buildings or 
environments. 

confusing text 
patterns 

The <e1>impact</e1> of the <e2>ground</e2> and crawl 
space on heat loss shall be taken into account in heat loss 
calculations. 
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Annex D: RASE-LLM Tool Interface 

 

Figure 34. Login Screen 

   

Figure 35. Sign Up Screen  
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Figure 36. Change Password 

  

 

Figure 37. Projects List 
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Figure 38. Add Project 

  

 

Figure 39. Project output (YAML Editor) 

 


